TMOS
1662 TopicsHappy 20th Birthday, BIG-IP TMOS!
I wasn’t in the waiting room with the F5 family, ears and eyes perked for the release announcement of BIG-IP version 9.0. I was a customer back in 2004, working on a government contract at Scott AFB, Illinois. I shared ownership of the F5 infrastructure, pairs of BIG-IPs running version 4.5 on Dell PowerEdge 2250 servers with one other guy. But maybe a month or two before the official first release of TMOS, my F5 account manager dropped off some shiny new hardware. And it was legit purpose-built and snazzy, not some garage-style hacked Frankenstein of COTS parts like the earlier stuff. And you wonder why we chose Dell servers! Anyway, I was a hard-core network engineer at this time, with very little exposure to anything above layer four, and even there, my understanding was limited to ports and ACLs and maybe a little high-level clarity around transport protocols. But application protocols? Nah. No idea. So with this new hardware and an entirely new full-proxy architecture (what’s a proxy, again?) I was overwhelmed. And honestly, I was frustrated with it for the first few days because I didn’t know what I didn’t know and so I struggled to figure out what to do with it, even to replicate my half-proxy configuration in the “new way”. But I’m a curious person. Given enough time and caffeine, I can usually get to the bottom of a problem, at least well enough to arrive at a workable solution. And so I did. My typical approach to anything is to make it work, make it work better, make it work reliably better, then finally make it work reliably and more performantly better. And the beauty here with this new TMOS system is that I was armed with a treasure trove of new toys. The short list I dug into during my beta trial, which lasted for a couple of weeks: The concept of a profile. When you support a few applications, this is no big deal. When you support hundreds, being able to macro configuration snippets within your application and across applications was revolutionary. Not just for the final solution, but also for setting up and executing your test plans. iRules. Yes, technically they existed in 4.x, but they were very limited in scope. With TMOS, F5 introduced the Tcl-based and F5 extended live-traffic scripting environment that unleashed tremendous power and flexibility for network and application teams. I dabbled with this, and thought I understood exactly how useful this was. More on this a little later. A host operating system. I was a router, switch, and firewall guy. Nothing I worked on had this capability. I mean, a linux system built in to my networking device? YES!!! Two things I never knew I always needed during my trial: 1) tcpdump ON BOX. Seriously--mind blown; and 2) perl scripting against config and snmp. Yeah, I know, I laugh about perl now. But 20 years ago, it was the cats pajamas. A fortunate job change Shortly after my trial was over, I interviewed for an accepted a job offer from a major rental car company that was looking to hire an engineer to redesign their application load balancing infrastructure and select the next gear purchase for the effort. We evaluated Cisco, Nortel/Alteon, Radware, and F5 on my recommendation. With our team’s resident architect we drafted the rubric with which we’d evaluate all the products, and whereas there were some layer two performance issues in some packet sizes that were arguably less than real-world, the BIG-IP blew away the competitors across the board. Particularly, though, in configurability and instrumentation. Tcpdump on box was such a game-changer for us. Did we have issues with TMOS version 9? For sure. My first year with TMOS was also TMOS's first year. Bugs are going to happen with any release, but a brand new thing is guaranteed. But F5 support was awesome, and we worked through all the issues in due time. Anyway, I want to share three wins in my first year with TMOS. Win #1 Our first production rollout was in the internet space, on BIG-IP version 9.0.5. That’s right, a .0 release. TMOS was a brand new baby, and we had great confidence throughout our testing. During our maintenance, once we flipped over the BIG-IPs, our rental transaction monitors all turned red and the scripted rental process had increased by 50%! Not good. “What is this F5 stuff? Send it back!!” But it was new, and we knew we had a gem here. We took packet captures on box, of course, then rolled back and took more packet captures, this time through taps because our old stuff didn’t have tcpdump on box. This is where Jason started to really learn about the implications of both a full proxy architecture and the TCP protocol. It turns our our application servers had a highly-tuned TCP stack on them specific to the characteristics of the rental application. We didn’t know this, of course. But since we implemented a proxy that terminates clients at the BIG-IP and starts a new session to the servers, all those customizations for WAN traffic were lost. Once we built a TCP profile specifically for the rental application servers and tested it under WAN emulation, we not only reached parity with the prior performance but beat it by 10%. Huzzah! Go BIG-IP custom protocol stack configuration! Win #2 For the next internal project, I had to rearchitect the terminal server farm. We had over 700 servers in two datacenters supporting over 60,000 thin clients around the world for rental terminals. Any failures meant paper tickets and unhappy staff and customers. One thing that was problematic with the existing solution is that sometimes clients would detach and upon reconnect would connect directly to the server, which skewed the load balancers view of the world and frequently overloaded some servers to the point all sessions on that server would hang until metrics (but usually angry staff) would notify. Remember my iRules comment earlier on differentiators? Well, iRules architect David Hansen happened to be a community hero and was very helpful to me in the DevCentral forums and really opened my eyes to the art of possible with iRules. He was able to take the RDP session token that was being returned by the client, read it, translate it from its Microsoft encoding format, and then forward the session on to the correct server in the backend so that all sessions continued to be accounted for in our load balancing tier. This was formative for me as a technologist and as a member of the DevCentral community. Win #3 2004-2005 was the era before security patching was as visible a responsibility as it is today, but even then we had a process and concerns when there were obstacles. We had an internal application that had a plugin for the web tier that managed all the sessions to the app tier, and this plugin was no longer supported. We were almost a year behind on system and application patches because we had no replacement for this. Enter, again, iRules.I was able to rebuild the logic of the plugin in an iRule that IIRCwasn’tmore than 30 lines. So the benefits ended up not only being a solution to that problem, but the ability to remove that web tier altogether, saving on equipment, power, and complexity costs. And that was just the beginning... TMOS was mature upon arrival, but it got better every year. iControl added REST-based API access; clustered multi-processing introduced tremendous performance gains; TMOS got virtualized, and all the home-lab technologists shouted with joy; a plugin architecture allowed for product modules like ASM and APM; solutions that began as iRules like AFM and SSLO became products. It’s crazy how much innovation has taken place on this platform! The introduction of TMOS didn’t just introduce me to applications and programmability. It did that and I’m grateful, but it did so much more. It unlocked in me that fanboy level that fans of sports teams, video game platforms, Taylor Swift, etc, experience. It helped me build an online community at DevCentral, long before I was an employee. Happy 20th Birthday, TMOS! We celebrate and salute you!501Views9likes1CommentCipher Suite Practices and Pitfalls
Cipher Suite Practices and Pitfalls It seems like every time you turn around there is a new vulnerability to deal with, and some of them, such as Sweet32, have required altering cipher configurations for mitigation. Still other users may tweak their cipher suite settings to meet requirements for PCI compliance, regulatory issues, local compatibility needs, etc. However, once you start modifying your cipher suite settings you must take great care, as it is very easy to shoot yourself in the foot. Many misconfigurations will silently fail – seeming to achieve the intended result while opening up new, even worse, vulnerabilities. Let's take a look at cipher configuration on the F5 BIG-IP products to try stay on the safe path. What is a Cipher Suite? Before we talk about how they're configured, let's define exactly what we mean by 'cipher suite', how it differs from just a 'cipher', and the components of the suite. Wikipedia had a good summary, so rather than reinvent the wheel: A cipher suite is a named combination of authentication, encryption, message authentication code (MAC) and key exchange algorithms used to negotiate the security settings for a network connection using the Transport Layer Security (TLS) / Secure Sockets Layer (SSL) network protocol. When we talk about configuring ciphers on BIG-IP we're really talking about configuring cipher suites. More specifically the configured list of cipher suites is a menu of options available to be negotiated. Each cipher suite specifies the key exchange algorithm, authentication algorithm, cipher, cipher mode, and MAC that will be used. I recommend reading K15194: Overview of the BIG-IP SSL/TLS cipher suite for more information. But as a quick overview, let's look at a couple of example cipher suites. The cipher suite is in the format: Key Exchange-Authentication-Cipher-Cipher Mode-MAC Note that not all of these components may be explicitly present in the cipher suite, but they are still implicitly part of the suite. Let's consider this cipher suite: ECDHE-RSA-AES256-GCM-SHA384 This breaks down as follows: Key Exchange Algorithm: ECDHE (Elliptic Curve Diffie-Hellman Ephemeral) Authentication Algorithm: RSA Cipher: AES256 (aka AES with a 256-bit key) Cipher Mode: GCM (Galois/Counter Mode) MAC: SHA384 (aka SHA-2 (Secure Hash Algorithm 2) with 384-bit hash) This is arguably the strongest cipher suite we have on BIG-IP at this time. Let's compare that to a simpler cipher suite: AES128-SHA Key Exchange Algorithm: RSA (Implied) – When it isn't specified, presume RSA. Authentication Algorithm: RSA (Implied) – When it isn't specified, presume RSA. Cipher: AES128 (aka AES with a 128-bit key) Cipher Mode: CBC (Cipher Block Chaining) (Implied) – When it isn't specified, presume CBC. MAC: SHA1 (Secure Hash Algorithm 1; SHA-1 always produces a 160-bit hash.) This example illustrates that the cipher suite may not always explicitly specify every parameter, but they're still there. There are 'default' values that are fairly safe to presume when not otherwise specified. If an algorithm isn't specified, it is RSA. That's a safe bet. And if a cipher mode isn't specified it is CBC. Always CBC. Note that all ciphers currently supported on BIG-IP are CBC mode except for AES-GCM and RC4. ALL. I stress this as it has been a recurring source of confusion amongst customers. It isn't only the cipher suites which explicitly state 'CBC' in their name. Let's examine each of these components. This article is primarily about cipher suite configuration and ciphers, and not the SSL/TLS protocol, so I won't dive too deeply here, but I think it helps to have a basic understanding. Forgive me if I simplify a bit. Key Exchange Algorithms As a quick review of the difference between asymmetric key (aka public key) cryptography and symmetric key cryptography: With the asymmetric key you have two keys – K public and K private –which have a mathematical relationship. Since you can openly share the public key there is no need to pre-share keys with anyone. The downside is that these algorithms are computationally expensive. Key lengths for a common algorithm such as RSA are at least 1024-bit, and 2048-bit is really the minimally acceptable these days. Symmetric key has only K private . Both ends use the same key, which poses the problem of key distribution. The advantage is higher computational performance and common key sizes are 128-bit or 256-bit. SSL/TLS, of course, uses both public and private key systems – the Key Exchange Algorithm is the public key system used to exchange the symmetric key. Examples you'll see in cipher suites include ECDHE, DHE, RSA, ECDH, and ADH. Authentication Algorithms The Authentication Algorithm is sometimes grouped in with the Key Exchange Algorithm for configuration purposes; 'ECDHE_RSA' for example. But we'll consider it as a separate component. This is the algorithm used in the SSL/TLS handshake for the server to sign (using the server's private key) elements sent to the client in the negotiation. The client can authenticate them using the server's public key. Examples include: RSA, ECDSA, DSS (aka DSA), and Anonymous. Anonymous means no authentication; this is generally bad. The most common way users run into this is by accidentally enabling an 'ADH' cipher suite. More on this later when we talk about pitfalls. Note that when RSA is used for the key exchange, authentication is inherent to the scheme so there really isn't a separate authentication step. However, most tools will list it out for completeness. Cipher To borrow once again from Wikipedia: In cryptography, a cipher (or cypher) is an algorithm for performing encryption or decryption—a series of well-defined steps that can be followed as a procedure. An alternative, less common term is encipherment. To encipher or encode is to convert information into cipher or code. In common parlance, 'cipher' is synonymous with 'code', as they are both a set of steps that encrypt a message; however, the concepts are distinct in cryptography, especially classical cryptography. This is what most of us mean when we refer to 'configuring ciphers'. We're primarily interested in controlling the cipher used to protect our information through encryption. There are many, many examples of ciphers which you may be familiar with: DES (Data Encryption Standard), 3DES (Triple DES), AES (Advanced Encryption Standard), RC4 (Rivest Cipher 4), Camellia, RC6, RC2, Blowfish, Twofish, IDEA, SEED, GOST, Rijndael, Serpent, MARS, etc. For a little cipher humor, I recommend RFC2410: The NULL Encryption Algorithm and Its Use With IPsec. Roughly speaking, ciphers come in two types – block ciphers and stream ciphers. Block Ciphers Block ciphers operate on fixed-length chunks of data, or blocks. For example, DES operates on 64-bit blocks while AES operates on 128-bit blocks. Most of the ciphers you'll encounter are block ciphers. Examples: DES, 3DES, AES, Blowfish, Twofish, etc. Stream Ciphers Stream ciphers mathematically operate on each bit in the data flow individually. The most commonly encountered stream cipher is RC4, and that's deprecated. So we're generally focused on block ciphers, not that it really changes anything for the purposes of this article. All of the secrecy in encryption comes from the key that is used, not the cipher itself. Obtain the key and you can unlock the ciphertext. The cipher itself – the algorithm, source code, etc. – not only can be, but should be, openly available. History is full of examples of private cryptosystems failing due to weaknesses missed by their creators, while the most trusted ciphers were created via open processes (AES for example). Keys are of varying lengths and, generally speaking, the longer the key the more secure the encryption. DES only had 56-bits of key data, and thus is considered insecure. We label 3DES as 168-bit, but it is really only equivalent to 112-bit strength. (More on this later.) Newer ciphers, such as AES, often offer options – 128-bits, 192-bits, or 256-bits of key. Remember, a 256-bit key is far more than twice as strong as a 128-bit key. It is 2 128 vs. 2 256 - 3.4028237e+38 vs. 1.1579209e+77 Cipher Mode Cipher mode is the mode of operation used by the cipher when encrypting plaintext into ciphertext, or decrypting ciphertext into plaintext. The most common mode is CBC – Cipher Block Chaining. In cipher block chaining the ciphertext from block n feeds into the process for block n+1 – the blocks are chained together. To steal borrow an image from Wikipedia: As I mentioned previously, all ciphers on BIG-IP are CBC mode except for RC4 (the lone stream cipher, disabled by default starting in 11.6.0) and AES-GCM. AES-GCM was first introduced in 11.5.0, and it is only available for TLSv1.2 connections. GCM stands for Galois/Counter Mode, a more advanced mode of operation than CBC. In GCM the blocks are not chained together. GCM runs in an Authenticated Encryption with Associated Data (AEAD) mode which eliminates the separate per-message hashing step, therefore it can achieve higher performance than CBC mode on a given HW platform. It is also immune to classes of attack that have harried CBC, such as the numerous padding attacks (BEAST, Lucky 13, etc.) Via Wikipedia: The main drawback to AES-GCM is that it was only added in TLSv1.2, so any older clients which don't support TLSv1.2 cannot use it. There are other cipher suites officially supported in TLS which have other modes, but F5 does not currently support those ciphers so we won't get too deep into that. Other ciphers include AES-CCM (CTR mode with a CBC MAC; CTR is Counter Mode), CAMELLIA-GCM (CAMELLIA as introduced in 12.0.0 is CBC), and GOST CNT (aka CTR). We may see these in the future. MAC aka Hash Function What did we ever do before Wikipedia? A hash function is any function that can be used to map data of arbitrary size to data of fixed size. The values returned by a hash function are called hash values, hash codes, digests, or simply hashes. One use is a data structure called a hash table, widely used in computer software for rapid data lookup. Hash functions accelerate table or database lookup by detecting duplicated records in a large file. An example is finding similar stretches in DNA sequences. They are also useful in cryptography. A cryptographic hash function allows one to easily verify that some input data maps to a given hash value, but if the input data is unknown, it is deliberately difficult to reconstruct it (or equivalent alternatives) by knowing the stored hash value. This is used for assuring integrity of transmitted data, and is the building block for HMACs, which provide message authentication. In short, the MAC provides message integrity. Hash functions include MD5, SHA-1 (aka SHA), SHA-2 (aka SHA128, SHA256, & SHA384), and AEAD (Authenticated Encryption with Associated Data). MD5 has long since been rendered completely insecure and is deprecated. SHA-1 is now being 'shamed', if not blocked, by browsers as it is falling victim to advances in cryptographic attacks. While some may need to continue to support SHA-1 cipher suites for legacy clients, it is encouraged to migrate to SHA-2 as soon as possible – especially for digital certificates. Configuring Cipher Suites on BIG-IP Now that we've covered what cipher suites are, let's look at where we use them. There are two distinct and separate areas where cipher suites are used – the host, or control plane, and TMM, or the data plane. On the host side SSL/TLS is handled by OpenSSL and the configuration follows the standard OpenSSL configuration options. Control Plane The primary use of SSL/TLS on the control plane is for httpd. To see the currently configured cipher suite, use ' tmsh list sys http ssl-ciphersuite '. The defaults may vary depending on the version of TMOS. For example, these were the defaults in 12.0.0: tmsh list sys http ssl-ciphersuite sys httpd { ssl-ciphersuite DEFAULT:!aNULL:!eNULL:!LOW:!RC4:!MD5:!EXP } As of 12.1.2 these have been updated to a more explicit list: tmsh list sys http ssl-ciphersuite sys httpd { ssl-ciphersuite ECDHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-GCM-SHA384:ECDHE-RSA-AES128-SHA:ECDHE-RSA-AES256-SHA:ECDHE-RSA-AES128-SHA256:ECDHE-RSA-AES256-SHA384:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-ECDSA-AES128-SHA:ECDHE-ECDSA-AES256-SHA:ECDHE-ECDSA-AES128-SHA256:ECDHE-ECDSA-AES256-SHA384:AES128-GCM-SHA256:AES256-GCM-SHA384:AES128-SHA:AES256-SHA:AES128-SHA256:AES256-SHA256:ECDHE-RSA-DES-CBC3-SHA:ECDHE-ECDSA-DES-CBC3-SHA:DES-CBC3-SHA } You can change this configuration via ' tmsh modify sys http ssl-ciphersuite <value> '. One important thing to note is that the default is not just 'DEFAULT' as it is on the data plane. This is one thing that users have been caught by; thinking that setting the keyword to 'DEFAULT' will reset the configuration. As OpenSSL provides SSL/TLS support for the control plane, if you want to see which ciphers will actually be supported you can use ' openssl ciphers -v <cipherstring> '. For example: openssl ciphers -v 'ECDHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-GCM-SHA384:ECDHE-RSA-AES128-SHA:ECDHE-RSA-AES256-SHA:ECDHE-RSA-AES128-SHA256:ECDHE-RSA-AES256-SHA384:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-ECDSA-AES128-SHA:ECDHE-ECDSA-AES256-SHA:ECDHE-ECDSA-AES128-SHA256:ECDHE-ECDSA-AES256-SHA384:AES128-GCM-SHA256:AES256-GCM-SHA384:AES128-SHA:AES256-SHA:AES128-SHA256:AES256-SHA256:ECDHE-RSA-DES-CBC3-SHA:ECDHE-ECDSA-DES-CBC3-SHA:DES-CBC3-SHA' ECDHE-RSA-AES128-GCM-SHA256 TLSv1.2 Kx=ECDH Au=RSA Enc=AESGCM(128) Mac=AEAD ECDHE-RSA-AES256-GCM-SHA384 TLSv1.2 Kx=ECDH Au=RSA Enc=AESGCM(256) Mac=AEAD ECDHE-RSA-AES128-SHA SSLv3 Kx=ECDH Au=RSA Enc=AES(128) Mac=SHA1 ECDHE-RSA-AES256-SHA SSLv3 Kx=ECDH Au=RSA Enc=AES(256) Mac=SHA1 ECDHE-RSA-AES128-SHA256 TLSv1.2 Kx=ECDH Au=RSA Enc=AES(128) Mac=SHA256 ECDHE-RSA-AES256-SHA384 TLSv1.2 Kx=ECDH Au=RSA Enc=AES(256) Mac=SHA384 ECDHE-ECDSA-AES128-GCM-SHA256 TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESGCM(128) Mac=AEAD ECDHE-ECDSA-AES256-GCM-SHA384 TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESGCM(256) Mac=AEAD ECDHE-ECDSA-AES128-SHA SSLv3 Kx=ECDH Au=ECDSA Enc=AES(128) Mac=SHA1 ECDHE-ECDSA-AES256-SHA SSLv3 Kx=ECDH Au=ECDSA Enc=AES(256) Mac=SHA1 ECDHE-ECDSA-AES128-SHA256 TLSv1.2 Kx=ECDH Au=ECDSA Enc=AES(128) Mac=SHA256 ECDHE-ECDSA-AES256-SHA384 TLSv1.2 Kx=ECDH Au=ECDSA Enc=AES(256) Mac=SHA384 AES128-GCM-SHA256 TLSv1.2 Kx=RSA Au=RSA Enc=AESGCM(128) Mac=AEAD AES256-GCM-SHA384 TLSv1.2 Kx=RSA Au=RSA Enc=AESGCM(256) Mac=AEAD AES128-SHA SSLv3 Kx=RSA Au=RSA Enc=AES(128) Mac=SHA1 AES256-SHA SSLv3 Kx=RSA Au=RSA Enc=AES(256) Mac=SHA1 AES128-SHA256 TLSv1.2 Kx=RSA Au=RSA Enc=AES(128) Mac=SHA256 AES256-SHA256 TLSv1.2 Kx=RSA Au=RSA Enc=AES(256) Mac=SHA256 ECDHE-RSA-DES-CBC3-SHA SSLv3 Kx=ECDH Au=RSA Enc=3DES(168) Mac=SHA1 ECDHE-ECDSA-DES-CBC3-SHA SSLv3 Kx=ECDH Au=ECDSA Enc=3DES(168) Mac=SHA1 DES-CBC3-SHA SSLv3 Kx=RSA Au=RSA Enc=3DES(168) Mac=SHA1 Now let's see what happens if you use 'DEFAULT': openssl ciphers -v 'DEFAULT' ECDHE-RSA-AES256-GCM-SHA384 TLSv1.2 Kx=ECDH Au=RSA Enc=AESGCM(256) Mac=AEAD ECDHE-ECDSA-AES256-GCM-SHA384 TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESGCM(256) Mac=AEAD ECDHE-RSA-AES256-SHA384 TLSv1.2 Kx=ECDH Au=RSA Enc=AES(256) Mac=SHA384 ECDHE-ECDSA-AES256-SHA384 TLSv1.2 Kx=ECDH Au=ECDSA Enc=AES(256) Mac=SHA384 ECDHE-RSA-AES256-SHA SSLv3 Kx=ECDH Au=RSA Enc=AES(256) Mac=SHA1 ECDHE-ECDSA-AES256-SHA SSLv3 Kx=ECDH Au=ECDSA Enc=AES(256) Mac=SHA1 DHE-DSS-AES256-GCM-SHA384 TLSv1.2 Kx=DH Au=DSS Enc=AESGCM(256) Mac=AEAD DHE-RSA-AES256-GCM-SHA384 TLSv1.2 Kx=DH Au=RSA Enc=AESGCM(256) Mac=AEAD DHE-RSA-AES256-SHA256 TLSv1.2 Kx=DH Au=RSA Enc=AES(256) Mac=SHA256 DHE-DSS-AES256-SHA256 TLSv1.2 Kx=DH Au=DSS Enc=AES(256) Mac=SHA256 DHE-RSA-AES256-SHA SSLv3 Kx=DH Au=RSA Enc=AES(256) Mac=SHA1 DHE-DSS-AES256-SHA SSLv3 Kx=DH Au=DSS Enc=AES(256) Mac=SHA1 DHE-RSA-CAMELLIA256-SHA SSLv3 Kx=DH Au=RSA Enc=Camellia(256) Mac=SHA1 DHE-DSS-CAMELLIA256-SHA SSLv3 Kx=DH Au=DSS Enc=Camellia(256) Mac=SHA1 ECDH-RSA-AES256-GCM-SHA384 TLSv1.2 Kx=ECDH/RSA Au=ECDH Enc=AESGCM(256) Mac=AEAD ECDH-ECDSA-AES256-GCM-SHA384 TLSv1.2 Kx=ECDH/ECDSA Au=ECDH Enc=AESGCM(256) Mac=AEAD ECDH-RSA-AES256-SHA384 TLSv1.2 Kx=ECDH/RSA Au=ECDH Enc=AES(256) Mac=SHA384 ECDH-ECDSA-AES256-SHA384 TLSv1.2 Kx=ECDH/ECDSA Au=ECDH Enc=AES(256) Mac=SHA384 ECDH-RSA-AES256-SHA SSLv3 Kx=ECDH/RSA Au=ECDH Enc=AES(256) Mac=SHA1 ECDH-ECDSA-AES256-SHA SSLv3 Kx=ECDH/ECDSA Au=ECDH Enc=AES(256) Mac=SHA1 AES256-GCM-SHA384 TLSv1.2 Kx=RSA Au=RSA Enc=AESGCM(256) Mac=AEAD AES256-SHA256 TLSv1.2 Kx=RSA Au=RSA Enc=AES(256) Mac=SHA256 AES256-SHA SSLv3 Kx=RSA Au=RSA Enc=AES(256) Mac=SHA1 CAMELLIA256-SHA SSLv3 Kx=RSA Au=RSA Enc=Camellia(256) Mac=SHA1 PSK-AES256-CBC-SHA SSLv3 Kx=PSK Au=PSK Enc=AES(256) Mac=SHA1 ECDHE-RSA-AES128-GCM-SHA256 TLSv1.2 Kx=ECDH Au=RSA Enc=AESGCM(128) Mac=AEAD ECDHE-ECDSA-AES128-GCM-SHA256 TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESGCM(128) Mac=AEAD ECDHE-RSA-AES128-SHA256 TLSv1.2 Kx=ECDH Au=RSA Enc=AES(128) Mac=SHA256 ECDHE-ECDSA-AES128-SHA256 TLSv1.2 Kx=ECDH Au=ECDSA Enc=AES(128) Mac=SHA256 ECDHE-RSA-AES128-SHA SSLv3 Kx=ECDH Au=RSA Enc=AES(128) Mac=SHA1 ECDHE-ECDSA-AES128-SHA SSLv3 Kx=ECDH Au=ECDSA Enc=AES(128) Mac=SHA1 DHE-DSS-AES128-GCM-SHA256 TLSv1.2 Kx=DH Au=DSS Enc=AESGCM(128) Mac=AEAD DHE-RSA-AES128-GCM-SHA256 TLSv1.2 Kx=DH Au=RSA Enc=AESGCM(128) Mac=AEAD DHE-RSA-AES128-SHA256 TLSv1.2 Kx=DH Au=RSA Enc=AES(128) Mac=SHA256 DHE-DSS-AES128-SHA256 TLSv1.2 Kx=DH Au=DSS Enc=AES(128) Mac=SHA256 DHE-RSA-AES128-SHA SSLv3 Kx=DH Au=RSA Enc=AES(128) Mac=SHA1 DHE-DSS-AES128-SHA SSLv3 Kx=DH Au=DSS Enc=AES(128) Mac=SHA1 DHE-RSA-SEED-SHA SSLv3 Kx=DH Au=RSA Enc=SEED(128) Mac=SHA1 DHE-DSS-SEED-SHA SSLv3 Kx=DH Au=DSS Enc=SEED(128) Mac=SHA1 DHE-RSA-CAMELLIA128-SHA SSLv3 Kx=DH Au=RSA Enc=Camellia(128) Mac=SHA1 DHE-DSS-CAMELLIA128-SHA SSLv3 Kx=DH Au=DSS Enc=Camellia(128) Mac=SHA1 ECDH-RSA-AES128-GCM-SHA256 TLSv1.2 Kx=ECDH/RSA Au=ECDH Enc=AESGCM(128) Mac=AEAD ECDH-ECDSA-AES128-GCM-SHA256 TLSv1.2 Kx=ECDH/ECDSA Au=ECDH Enc=AESGCM(128) Mac=AEAD ECDH-RSA-AES128-SHA256 TLSv1.2 Kx=ECDH/RSA Au=ECDH Enc=AES(128) Mac=SHA256 ECDH-ECDSA-AES128-SHA256 TLSv1.2 Kx=ECDH/ECDSA Au=ECDH Enc=AES(128) Mac=SHA256 ECDH-RSA-AES128-SHA SSLv3 Kx=ECDH/RSA Au=ECDH Enc=AES(128) Mac=SHA1 ECDH-ECDSA-AES128-SHA SSLv3 Kx=ECDH/ECDSA Au=ECDH Enc=AES(128) Mac=SHA1 AES128-GCM-SHA256 TLSv1.2 Kx=RSA Au=RSA Enc=AESGCM(128) Mac=AEAD AES128-SHA256 TLSv1.2 Kx=RSA Au=RSA Enc=AES(128) Mac=SHA256 AES128-SHA SSLv3 Kx=RSA Au=RSA Enc=AES(128) Mac=SHA1 SEED-SHA SSLv3 Kx=RSA Au=RSA Enc=SEED(128) Mac=SHA1 CAMELLIA128-SHA SSLv3 Kx=RSA Au=RSA Enc=Camellia(128) Mac=SHA1 PSK-AES128-CBC-SHA SSLv3 Kx=PSK Au=PSK Enc=AES(128) Mac=SHA1 ECDHE-RSA-RC4-SHA SSLv3 Kx=ECDH Au=RSA Enc=RC4(128) Mac=SHA1 ECDHE-ECDSA-RC4-SHA SSLv3 Kx=ECDH Au=ECDSA Enc=RC4(128) Mac=SHA1 ECDH-RSA-RC4-SHA SSLv3 Kx=ECDH/RSA Au=ECDH Enc=RC4(128) Mac=SHA1 ECDH-ECDSA-RC4-SHA SSLv3 Kx=ECDH/ECDSA Au=ECDH Enc=RC4(128) Mac=SHA1 RC4-SHA SSLv3 Kx=RSA Au=RSA Enc=RC4(128) Mac=SHA1 RC4-MD5 SSLv3 Kx=RSA Au=RSA Enc=RC4(128) Mac=MD5 PSK-RC4-SHA SSLv3 Kx=PSK Au=PSK Enc=RC4(128) Mac=SHA1 ECDHE-RSA-DES-CBC3-SHA SSLv3 Kx=ECDH Au=RSA Enc=3DES(168) Mac=SHA1 ECDHE-ECDSA-DES-CBC3-SHA SSLv3 Kx=ECDH Au=ECDSA Enc=3DES(168) Mac=SHA1 EDH-RSA-DES-CBC3-SHA SSLv3 Kx=DH Au=RSA Enc=3DES(168) Mac=SHA1 EDH-DSS-DES-CBC3-SHA SSLv3 Kx=DH Au=DSS Enc=3DES(168) Mac=SHA1 ECDH-RSA-DES-CBC3-SHA SSLv3 Kx=ECDH/RSA Au=ECDH Enc=3DES(168) Mac=SHA1 ECDH-ECDSA-DES-CBC3-SHA SSLv3 Kx=ECDH/ECDSA Au=ECDH Enc=3DES(168) Mac=SHA1 DES-CBC3-SHA SSLv3 Kx=RSA Au=RSA Enc=3DES(168) Mac=SHA1 PSK-3DES-EDE-CBC-SHA SSLv3 Kx=PSK Au=PSK Enc=3DES(168) Mac=SHA1 EDH-RSA-DES-CBC-SHA SSLv3 Kx=DH Au=RSA Enc=DES(56) Mac=SHA1 EDH-DSS-DES-CBC-SHA SSLv3 Kx=DH Au=DSS Enc=DES(56) Mac=SHA1 DES-CBC-SHA SSLv3 Kx=RSA Au=RSA Enc=DES(56) Mac=SHA1 EXP-EDH-RSA-DES-CBC-SHA SSLv3 Kx=DH(512) Au=RSA Enc=DES(40) Mac=SHA1 export EXP-EDH-DSS-DES-CBC-SHA SSLv3 Kx=DH(512) Au=DSS Enc=DES(40) Mac=SHA1 export EXP-DES-CBC-SHA SSLv3 Kx=RSA(512) Au=RSA Enc=DES(40) Mac=SHA1 export EXP-RC2-CBC-MD5 SSLv3 Kx=RSA(512) Au=RSA Enc=RC2(40) Mac=MD5 export EXP-RC4-MD5 SSLv3 Kx=RSA(512) Au=RSA Enc=RC4(40) Mac=MD5 export As you can see that enables far, far more ciphers, including a number of unsafe ciphers – export, MD5, DES, etc. This is a good example of why you always want to confirm your cipher settings and check exactly what is being enabled before placing new settings into production. Many security disasters could be avoided if everyone doublechecked their settings first. Let’s take a closer look at how OpenSSL represents one of the cipher suites: ECDHE-RSA-AES256-GCM-SHA384 TLSv1.2 Kx=ECDH Au=RSA Enc=AESGCM(256) Mac=AEAD The columns are: Cipher Suite: ECDHE-RSA-AES256-GCM-SHA384 Protocol: TLSv1.2 Key Exchange Algorithm (Kx): ECDH Authentication Algorithm (Au): RSA Cipher/Encryption Algorithm (Enc): AESGCM(256) MAC (Mac): AEAD Since the control plane uses OpenSSL you can use the standard OpenSSL documentation, so I won't spend a lot of time on that. Data Plane In TMM the cipher suites are configured in the Ciphers field of the Client SSL or Server SSL profiles. See K14783: Overview of the Client SSL profile (11.x - 12.x) & K14806: Overview of the Server SSL profile (11.x - 12.x), respectively for more details. It is important to keep in mind that these are two different worlds with their own requirements and quirks. As most of the configuration activity, and security concerns, occur on the public facing side of the system, we'll focus on the Client SSL Profile. Most of the things we'll cover here will also apply to the Server SSL profile. In the GUI it appears as an editable field: Presuming the profile was created with the name 'Test': tmsh list ltm profile client-ssl Test ltm profile client-ssl Test { app-service none cert default.crt cert-key-chain { default { cert default.crt key default.key } } chain none ciphers DEFAULT defaults-from clientssl inherit-certkeychain true key default.key passphrase none } Modifying the cipher configuration from the command line is simple. tmsh list ltm profile client-ssl Test ciphers ltm profile client-ssl Test { ciphers DEFAULT } tmsh modify ltm profile client-ssl Test ciphers 'DEFAULT:!3DES' tmsh list ltm profile client-ssl Test ciphers ltm profile client-ssl Test { ciphers DEFAULT:!3DES } Just remember the ' tmsh save sys config ' when you're happy with the configuration. Note here the default is just 'DEFAULT'. What that expands to will vary depending on the version of TMOS. K13156: SSL ciphers used in the default SSL profiles (11.x - 12.x) defines the default values for each version of TMOS. Or you can check it locally from the command line: tmm --clientciphers 'DEFAULT' On 12.1.2 that would be: tmm --clientciphers 'DEFAULT' ID SUITE BITS PROT METHOD CIPHER MAC KEYX 0: 159 DHE-RSA-AES256-GCM-SHA384 256 TLS1.2 Native AES-GCM SHA384 EDH/RSA 1: 158 DHE-RSA-AES128-GCM-SHA256 128 TLS1.2 Native AES-GCM SHA256 EDH/RSA 2: 107 DHE-RSA-AES256-SHA256 256 TLS1.2 Native AES SHA256 EDH/RSA 3: 57 DHE-RSA-AES256-SHA 256 TLS1 Native AES SHA EDH/RSA 4: 57 DHE-RSA-AES256-SHA 256 TLS1.1 Native AES SHA EDH/RSA 5: 57 DHE-RSA-AES256-SHA 256 TLS1.2 Native AES SHA EDH/RSA 6: 57 DHE-RSA-AES256-SHA 256 DTLS1 Native AES SHA EDH/RSA 7: 103 DHE-RSA-AES128-SHA256 128 TLS1.2 Native AES SHA256 EDH/RSA 8: 51 DHE-RSA-AES128-SHA 128 TLS1 Native AES SHA EDH/RSA 9: 51 DHE-RSA-AES128-SHA 128 TLS1.1 Native AES SHA EDH/RSA 10: 51 DHE-RSA-AES128-SHA 128 TLS1.2 Native AES SHA EDH/RSA 11: 51 DHE-RSA-AES128-SHA 128 DTLS1 Native AES SHA EDH/RSA 12: 22 DHE-RSA-DES-CBC3-SHA 168 TLS1 Native DES SHA EDH/RSA 13: 22 DHE-RSA-DES-CBC3-SHA 168 TLS1.1 Native DES SHA EDH/RSA 14: 22 DHE-RSA-DES-CBC3-SHA 168 TLS1.2 Native DES SHA EDH/RSA 15: 22 DHE-RSA-DES-CBC3-SHA 168 DTLS1 Native DES SHA EDH/RSA 16: 157 AES256-GCM-SHA384 256 TLS1.2 Native AES-GCM SHA384 RSA 17: 156 AES128-GCM-SHA256 128 TLS1.2 Native AES-GCM SHA256 RSA 18: 61 AES256-SHA256 256 TLS1.2 Native AES SHA256 RSA 19: 53 AES256-SHA 256 TLS1 Native AES SHA RSA 20: 53 AES256-SHA 256 TLS1.1 Native AES SHA RSA 21: 53 AES256-SHA 256 TLS1.2 Native AES SHA RSA 22: 53 AES256-SHA 256 DTLS1 Native AES SHA RSA 23: 60 AES128-SHA256 128 TLS1.2 Native AES SHA256 RSA 24: 47 AES128-SHA 128 TLS1 Native AES SHA RSA 25: 47 AES128-SHA 128 TLS1.1 Native AES SHA RSA 26: 47 AES128-SHA 128 TLS1.2 Native AES SHA RSA 27: 47 AES128-SHA 128 DTLS1 Native AES SHA RSA 28: 10 DES-CBC3-SHA 168 TLS1 Native DES SHA RSA 29: 10 DES-CBC3-SHA 168 TLS1.1 Native DES SHA RSA 30: 10 DES-CBC3-SHA 168 TLS1.2 Native DES SHA RSA 31: 10 DES-CBC3-SHA 168 DTLS1 Native DES SHA RSA 32: 49200 ECDHE-RSA-AES256-GCM-SHA384 256 TLS1.2 Native AES-GCM SHA384 ECDHE_RSA 33: 49199 ECDHE-RSA-AES128-GCM-SHA256 128 TLS1.2 Native AES-GCM SHA256 ECDHE_RSA 34: 49192 ECDHE-RSA-AES256-SHA384 256 TLS1.2 Native AES SHA384 ECDHE_RSA 35: 49172 ECDHE-RSA-AES256-CBC-SHA 256 TLS1 Native AES SHA ECDHE_RSA 36: 49172 ECDHE-RSA-AES256-CBC-SHA 256 TLS1.1 Native AES SHA ECDHE_RSA 37: 49172 ECDHE-RSA-AES256-CBC-SHA 256 TLS1.2 Native AES SHA ECDHE_RSA 38: 49191 ECDHE-RSA-AES128-SHA256 128 TLS1.2 Native AES SHA256 ECDHE_RSA 39: 49171 ECDHE-RSA-AES128-CBC-SHA 128 TLS1 Native AES SHA ECDHE_RSA 40: 49171 ECDHE-RSA-AES128-CBC-SHA 128 TLS1.1 Native AES SHA ECDHE_RSA 41: 49171 ECDHE-RSA-AES128-CBC-SHA 128 TLS1.2 Native AES SHA ECDHE_RSA 42: 49170 ECDHE-RSA-DES-CBC3-SHA 168 TLS1 Native DES SHA ECDHE_RSA 43: 49170 ECDHE-RSA-DES-CBC3-SHA 168 TLS1.1 Native DES SHA ECDHE_RSA 44: 49170 ECDHE-RSA-DES-CBC3-SHA 168 TLS1.2 Native DES SHA ECDHE_RSA Some differences when compared to OpenSSL are readily apparent. For starters, TMM kindly includes a column label header, and actually aligns the columns. The first column is simply a 0-ordinal numeric index, the rest are as follows: ID: The official SSL/TLS ID assigned to that cipher suite. SUITE: The cipher suite. BITS: The size of the key in bits. PROT: The protocol supported. METHOD: NATIVE (in TMM) vs. COMPAT (using OpenSSL code). CIPHER: The cipher. MAC: The hash function. KEYX: The Key Exchange and Authentication Algorithms Note that the MAC is a little misleading for AES-GCM cipher suites. There is no separate MAC as they're AEAD. But the hashing algorithm is used in the Pseudo-Random Function (PRF) and a few other handshake related places. Selecting the Cipher Suites Now we know how to look at the current configuration, modify it, and list the actual ciphers that will be enabled by the listed suites. But what do we put into the configuration? Most users won't have to touch this. The default values are carefully selected by F5 to meet the needs of the majority of our customers. That's the good news. The bad news is that some customers will need to get in there and change the configuration – be it for regulatory compliance, internal policies, legacy client support, etc. Once you begin modifying them, the configuration is truly custom for each customer. Every customer who modifies the configuration, and uses a custom cipher configuration, needs to determine what the proper list is for their needs. Let's say we have determined that we need to support only AES & AES-GCM, 128-bit or 256-bit, and only ECDHE key exchange. Any MAC or Authentication is fine. OK, let's proceed from there. On 12.1.2 there are six cipher suites that fit those criteria. We could list them all explicitly: tmm --clientciphers 'ECDHE-RSA-AES256-GCM-SHA384:ECDHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-SHA384:ECDHE-RSA-AES256-CBC-SHA:ECDHE-RSA-AES128-SHA256:ECDHE-RSA-AES128-CBC-SHA' That will work, but it gets unwieldy fast. Not only that, but in versions up to 11.5.0 the ciphers configuration string was truncated at 256bytes. Starting in 11.5.0 that was increased to 768bytes, but that can still truncate long configurations. We'll revisit this when we get to the pitfalls section. Fortunately, there is an alternative – keywords! This will result in the same list of cipher suites: tmm --clientciphers 'ECDHE+AES-GCM:ECDHE+AES' That specifies the ECDHE key exchange with AES-GCM ciphers, and ECDHE with AES ciphers. Let's take a closer look to help understand what is happening here. Keywords Keywords are extremely important when working with cipher suite configuration, so we'll spend a little time on those. Most of these apply to both the control plane (OpenSSL) and the data plane (TMM), unless otherwise noted, but we're focused on the data plane as that's F5 specific. Keywords organize into different categories. F5 specific: NATIVE: cipher suites implemented natively in TMM COMPAT: cipher suites using OpenSSL code; removed as of 12.0.0 @SPEED: Re-orders the list to put 'faster' (based on TMOS implementation performance) ciphers first. Sorting: @SPEED: Re-orders the list to put 'faster' (based on TMOS implementation performance) ciphers first. (F5 Specific) @STRENGTH: Re-orders the list to put 'stronger' (larger keys) ciphers first. Protocol: TLSv1_2: cipher suites available under TLSv1.2 TLSv1_1: cipher suites available under TLSv1.1 TLSv1: cipher suites available under TLSv1.0 SSLv3: cipher suites available under SSLv3 Note the 'Protocol' keywords in the cipher configuration control the ciphers associated with that protocol, and not the protocol itself! More on this in pitfalls. Key Exchange Algorithms (sometimes with Authentication specified): ECDHE or ECDHA_RSA: Elliptic Curve Diffie-Hellman Ephemeral (with RSA) ECDHE_ECDSA: ECDHE with Elliptic Curve Digital Signature Algorithm DHE or EDH: Diffie-Hellman Ephemeral (aka Ephemeral Diffie-Hellman) (with RSA) DHE_DSS: DHE with Digital Signature Standard (aka DSA – Digital Signature Algorithm) ECDH_RSA: Elliptic Curve Diffie-Hellman with RSA ECDH_ECDSA: ECDH with ECDSA RSA: RSA, obviously ADH: Anonymous Diffie-Hellman. Note the Authentication Algorithms don't work as standalone keywords in TMM. You can't use 'ECDSA' or 'DSS' for example. And you might think ECDHE or DHE includes all such cipher suites – note that they don't if you read carefully. General cipher groupings: DEFAULT: The default cipher suite for that version; see K13156 ALL: All NATIVE cipher suites; does not include COMPAT in current versions HIGH: 'High' security cipher suites; >128-bit MEDIUM: 'Medium' security cipher suites; effectively 128-bit suites LOW: 'Low' security cipher suites; <128-bit excluding export grade ciphers EXP or EXPORT: Export grade ciphers; 40-bit or 56-bit EXPORT56: 56-bit export ciphers EXPORT40: 40-bit export ciphers Note that DEFAULT does change periodically as F5 updates the configuration to follow the latest best practices. K13156: SSL ciphers used in the default SSL profiles (11.x - 12.x) documents these changes. Cipher families: AES-GCM: AES in GCM mode; 128-bit or 256-bit AES: AES in CBC mode; 128-bit or 256-bit CAMELLIA: Camellia in CBC mode; 128-bit or 256-bit 3DES: Triple DES in CBC mode; 168-bit (well, 112-bit really) DES: Single DES in CBC mode, includes EXPORTciphers;40-bit & 56-bit. RC4: RC4 stream cipher NULL: NULL cipher; just what it sounds like, it does nothing – no encryption MAC aka Hash Function: SHA384: SHA-2 384-bit hash SHA256: SHA-2 256-bit hash SHA1 or SHA: SHA-1 160-bit hash MD5: MD5 128-bit hash Other: On older TMOS versions when using the COMPAT keyword it also enables two additional keywords: SSLv2: Ciphers supported on the SSLv2 protocol RC2: RC2 ciphers. So, let's go back to our example: tmm --clientciphers 'ECDHE+AES-GCM:ECDHE+AES' Note that you can combine keywords using '+' (plus sign). And multiple entries in the ciphers configuration line are separated with ':' (colon). You may also need to wrap the string in single quotes on the command line – I find it is a good habit to just always do so. We can also exclude suites or keywords. There are two ways to do that: '!' (exclamation point) is a hard exclusion. Anything excluded this way cannot be implicitly or explicitly re-enabled. It is disabled, period. '-' (minus sign or dash) is a soft exclusion. Anything excluded this way can be explicitly re-enabled later in the configuration string. (Note: The dash is also usedinthe names of many cipher suites, such as ECDHE-RSA-AES256-GCM-SHA384 or AES128-SHA. Do not confuse the dashes that are part of the cipher suite names with a soft exclusion, which alwaysprecedes, or prefixes,the value being excluded. 'AES128-SHA': AES128-SHA cipher suite. '-SHA': SHA is soft excluded. '-AES128-SHA': the AES128-SHA cipher suite is soft excluded. Position matters.) Let's look at the difference in hard and soft exclusions. We'll start with our base example: tmm --clientciphers 'ECDHE+AES-GCM:DHE+AES-GCM' ID SUITE BITS PROT METHOD CIPHER MAC KEYX 0: 49200 ECDHE-RSA-AES256-GCM-SHA384 256 TLS1.2 Native AES-GCM SHA384 ECDHE_RSA 1: 49199 ECDHE-RSA-AES128-GCM-SHA256 128 TLS1.2 Native AES-GCM SHA256 ECDHE_RSA 2: 159 DHE-RSA-AES256-GCM-SHA384 256 TLS1.2 Native AES-GCM SHA384 EDH/RSA 3: 158 DHE-RSA-AES128-GCM-SHA256 128 TLS1.2 Native AES-GCM SHA256 EDH/RSA Now let's look at a hard exclusion: tmm --clientciphers 'ECDHE+AES-GCM:!DHE:DHE+AES-GCM' ID SUITE BITS PROT METHOD CIPHER MAC KEYX 0: 49200 ECDHE-RSA-AES256-GCM-SHA384 256 TLS1.2 Native AES-GCM SHA384 ECDHE_RSA 1: 49199 ECDHE-RSA-AES128-GCM-SHA256 128 TLS1.2 Native AES-GCM SHA256 ECDHE_RSA And lastly a soft exclusion: tmm --clientciphers 'ECDHE+AES-GCM:-DHE:DHE+AES-GCM' ID SUITE BITS PROT METHOD CIPHER MAC KEYX 0: 49200 ECDHE-RSA-AES256-GCM-SHA384 256 TLS1.2 Native AES-GCM SHA384 ECDHE_RSA 1: 49199 ECDHE-RSA-AES128-GCM-SHA256 128 TLS1.2 Native AES-GCM SHA256 ECDHE_RSA 2: 159 DHE-RSA-AES256-GCM-SHA384 256 TLS1.2 Native AES-GCM SHA384 EDH/RSA 3: 158 DHE-RSA-AES128-GCM-SHA256 128 TLS1.2 Native AES-GCM SHA256 EDH/RSA Note that in the second example, the hard exclusion, we used '!DHE' and even though we then explicitly added 'DHE+AES-GCM' those ciphers were not enabled. This is because, once excluded with a hard exclusion, ciphers cannot be re-enabled. In the third example, the soft exclusion, we used '-DHE' and then 'DHE+AES-GCM'. This time it did enable those ciphers, which is possible with a soft exclusion. You might be wondering what soft disabling is useful for; why would you ever want to remove ciphers only to add them again? Reordering the ciphers is a common use case. As an example, DEFAULT orders ciphers differently in different versions, but mainly based on strength – bit size. Let's say we know 3DES is really 112-bit equivalent strength and not 168-bit as it is usually labeled. For some reason, maybe legacy clients, we can't disable them, but we want them to be last on the list. One way to do this is to first configure the DEFAULT list, then remove all of the 3DES ciphers. But then add the 3DES ciphers back explicitly – at the end of the list. Let's try it – compare the following: tmm --clientciphers 'DEFAULT' ID SUITE BITS PROT METHOD CIPHER MAC KEYX 0: 159 DHE-RSA-AES256-GCM-SHA384 256 TLS1.2 Native AES-GCM SHA384 EDH/RSA 1: 158 DHE-RSA-AES128-GCM-SHA256 128 TLS1.2 Native AES-GCM SHA256 EDH/RSA 2: 107 DHE-RSA-AES256-SHA256 256 TLS1.2 Native AES SHA256 EDH/RSA 3: 57 DHE-RSA-AES256-SHA 256 TLS1 Native AES SHA EDH/RSA 4: 57 DHE-RSA-AES256-SHA 256 TLS1.1 Native AES SHA EDH/RSA 5: 57 DHE-RSA-AES256-SHA 256 TLS1.2 Native AES SHA EDH/RSA 6: 57 DHE-RSA-AES256-SHA 256 DTLS1 Native AES SHA EDH/RSA 7: 103 DHE-RSA-AES128-SHA256 128 TLS1.2 Native AES SHA256 EDH/RSA 8: 51 DHE-RSA-AES128-SHA 128 TLS1 Native AES SHA EDH/RSA 9: 51 DHE-RSA-AES128-SHA 128 TLS1.1 Native AES SHA EDH/RSA 10: 51 DHE-RSA-AES128-SHA 128 TLS1.2 Native AES SHA EDH/RSA 11: 51 DHE-RSA-AES128-SHA 128 DTLS1 Native AES SHA EDH/RSA 12: 22 DHE-RSA-DES-CBC3-SHA 168 TLS1 Native DES SHA EDH/RSA 13: 22 DHE-RSA-DES-CBC3-SHA 168 TLS1.1 Native DES SHA EDH/RSA 14: 22 DHE-RSA-DES-CBC3-SHA 168 TLS1.2 Native DES SHA EDH/RSA 15: 22 DHE-RSA-DES-CBC3-SHA 168 DTLS1 Native DES SHA EDH/RSA 16: 157 AES256-GCM-SHA384 256 TLS1.2 Native AES-GCM SHA384 RSA 17: 156 AES128-GCM-SHA256 128 TLS1.2 Native AES-GCM SHA256 RSA 18: 61 AES256-SHA256 256 TLS1.2 Native AES SHA256 RSA 19: 53 AES256-SHA 256 TLS1 Native AES SHA RSA 20: 53 AES256-SHA 256 TLS1.1 Native AES SHA RSA 21: 53 AES256-SHA 256 TLS1.2 Native AES SHA RSA 22: 53 AES256-SHA 256 DTLS1 Native AES SHA RSA 23: 60 AES128-SHA256 128 TLS1.2 Native AES SHA256 RSA 24: 47 AES128-SHA 128 TLS1 Native AES SHA RSA 25: 47 AES128-SHA 128 TLS1.1 Native AES SHA RSA 26: 47 AES128-SHA 128 TLS1.2 Native AES SHA RSA 27: 47 AES128-SHA 128 DTLS1 Native AES SHA RSA 28: 10 DES-CBC3-SHA 168 TLS1 Native DES SHA RSA 29: 10 DES-CBC3-SHA 168 TLS1.1 Native DES SHA RSA 30: 10 DES-CBC3-SHA 168 TLS1.2 Native DES SHA RSA 31: 10 DES-CBC3-SHA 168 DTLS1 Native DES SHA RSA 32: 49200 ECDHE-RSA-AES256-GCM-SHA384 256 TLS1.2 Native AES-GCM SHA384 ECDHE_RSA 33: 49199 ECDHE-RSA-AES128-GCM-SHA256 128 TLS1.2 Native AES-GCM SHA256 ECDHE_RSA 34: 49192 ECDHE-RSA-AES256-SHA384 256 TLS1.2 Native AES SHA384 ECDHE_RSA 35: 49172 ECDHE-RSA-AES256-CBC-SHA 256 TLS1 Native AES SHA ECDHE_RSA 36: 49172 ECDHE-RSA-AES256-CBC-SHA 256 TLS1.1 Native AES SHA ECDHE_RSA 37: 49172 ECDHE-RSA-AES256-CBC-SHA 256 TLS1.2 Native AES SHA ECDHE_RSA 38: 49191 ECDHE-RSA-AES128-SHA256 128 TLS1.2 Native AES SHA256 ECDHE_RSA 39: 49171 ECDHE-RSA-AES128-CBC-SHA 128 TLS1 Native AES SHA ECDHE_RSA 40: 49171 ECDHE-RSA-AES128-CBC-SHA 128 TLS1.1 Native AES SHA ECDHE_RSA 41: 49171 ECDHE-RSA-AES128-CBC-SHA 128 TLS1.2 Native AES SHA ECDHE_RSA 42: 49170 ECDHE-RSA-DES-CBC3-SHA 168 TLS1 Native DES SHA ECDHE_RSA 43: 49170 ECDHE-RSA-DES-CBC3-SHA 168 TLS1.1 Native DES SHA ECDHE_RSA 44: 49170 ECDHE-RSA-DES-CBC3-SHA 168 TLS1.2 Native DES SHA ECDHE_RSA tmm --clientciphers 'DEFAULT:-3DES:!SSLv3:3DES+ECDHE:3DES+DHE:3DES+RSA' ID SUITE BITS PROT METHOD CIPHER MAC KEYX 0: 159 DHE-RSA-AES256-GCM-SHA384 256 TLS1.2 Native AES-GCM SHA384 EDH/RSA 1: 158 DHE-RSA-AES128-GCM-SHA256 128 TLS1.2 Native AES-GCM SHA256 EDH/RSA 2: 107 DHE-RSA-AES256-SHA256 256 TLS1.2 Native AES SHA256 EDH/RSA 3: 57 DHE-RSA-AES256-SHA 256 TLS1 Native AES SHA EDH/RSA 4: 57 DHE-RSA-AES256-SHA 256 TLS1.1 Native AES SHA EDH/RSA 5: 57 DHE-RSA-AES256-SHA 256 TLS1.2 Native AES SHA EDH/RSA 6: 57 DHE-RSA-AES256-SHA 256 DTLS1 Native AES SHA EDH/RSA 7: 103 DHE-RSA-AES128-SHA256 128 TLS1.2 Native AES SHA256 EDH/RSA 8: 51 DHE-RSA-AES128-SHA 128 TLS1 Native AES SHA EDH/RSA 9: 51 DHE-RSA-AES128-SHA 128 TLS1.1 Native AES SHA EDH/RSA 10: 51 DHE-RSA-AES128-SHA 128 TLS1.2 Native AES SHA EDH/RSA 11: 51 DHE-RSA-AES128-SHA 128 DTLS1 Native AES SHA EDH/RSA 12: 157 AES256-GCM-SHA384 256 TLS1.2 Native AES-GCM SHA384 RSA 13: 156 AES128-GCM-SHA256 128 TLS1.2 Native AES-GCM SHA256 RSA 14: 61 AES256-SHA256 256 TLS1.2 Native AES SHA256 RSA 15: 53 AES256-SHA 256 TLS1 Native AES SHA RSA 16: 53 AES256-SHA 256 TLS1.1 Native AES SHA RSA 17: 53 AES256-SHA 256 TLS1.2 Native AES SHA RSA 18: 53 AES256-SHA 256 DTLS1 Native AES SHA RSA 19: 60 AES128-SHA256 128 TLS1.2 Native AES SHA256 RSA 20: 47 AES128-SHA 128 TLS1 Native AES SHA RSA 21: 47 AES128-SHA 128 TLS1.1 Native AES SHA RSA 22: 47 AES128-SHA 128 TLS1.2 Native AES SHA RSA 23: 47 AES128-SHA 128 DTLS1 Native AES SHA RSA 24: 49200 ECDHE-RSA-AES256-GCM-SHA384 256 TLS1.2 Native AES-GCM SHA384 ECDHE_RSA 25: 49199 ECDHE-RSA-AES128-GCM-SHA256 128 TLS1.2 Native AES-GCM SHA256 ECDHE_RSA 26: 49192 ECDHE-RSA-AES256-SHA384 256 TLS1.2 Native AES SHA384 ECDHE_RSA 27: 49172 ECDHE-RSA-AES256-CBC-SHA 256 TLS1 Native AES SHA ECDHE_RSA 28: 49172 ECDHE-RSA-AES256-CBC-SHA 256 TLS1.1 Native AES SHA ECDHE_RSA 29: 49172 ECDHE-RSA-AES256-CBC-SHA 256 TLS1.2 Native AES SHA ECDHE_RSA 30: 49191 ECDHE-RSA-AES128-SHA256 128 TLS1.2 Native AES SHA256 ECDHE_RSA 31: 49171 ECDHE-RSA-AES128-CBC-SHA 128 TLS1 Native AES SHA ECDHE_RSA 32: 49171 ECDHE-RSA-AES128-CBC-SHA 128 TLS1.1 Native AES SHA ECDHE_RSA 33: 49171 ECDHE-RSA-AES128-CBC-SHA 128 TLS1.2 Native AES SHA ECDHE_RSA 34: 49170 ECDHE-RSA-DES-CBC3-SHA 168 TLS1 Native DES SHA ECDHE_RSA 35: 49170 ECDHE-RSA-DES-CBC3-SHA 168 TLS1.1 Native DES SHA ECDHE_RSA 36: 49170 ECDHE-RSA-DES-CBC3-SHA 168 TLS1.2 Native DES SHA ECDHE_RSA 37: 22 DHE-RSA-DES-CBC3-SHA 168 TLS1 Native DES SHA EDH/RSA 38: 22 DHE-RSA-DES-CBC3-SHA 168 TLS1.1 Native DES SHA EDH/RSA 39: 22 DHE-RSA-DES-CBC3-SHA 168 TLS1.2 Native DES SHA EDH/RSA 40: 22 DHE-RSA-DES-CBC3-SHA 168 DTLS1 Native DES SHA EDH/RSA 41: 10 DES-CBC3-SHA 168 TLS1 Native DES SHA RSA 42: 10 DES-CBC3-SHA 168 TLS1.1 Native DES SHA RSA 43: 10 DES-CBC3-SHA 168 TLS1.2 Native DES SHA RSA 44: 10 DES-CBC3-SHA 168 DTLS1 Native DES SHA RSA I added something else in there which I'll come back to later. Pitfalls As should be clear by now cipher configuration is a powerful tool, but as the song says, every tool is a weapon if you hold it right. And weapons are dangerous. With a little careless handling it is easy to lose a toe – or a leg. Whenever you are working with cipher suite configuration the old rule of 'measure twice, cut once' applies – and then double-check the work to be certain. There are several common pitfalls which await you. Misuse Perhaps the most common pitfall is simply misuse – using cipher suite configuration for that which it is not intended. And the single most common example of this comes from using cipher configuration to manipulate protocols. Given the keywords, as described above, it seems common for users to presume that if they want to disable a protocol, such as TLSv1.0, then the way to do that is to use a cipher suite keyword, such as !TLSv1. And, indeed, this may seem to work – but it isn't doing what is desired. The protocol is not disabled, only the ciphers that are supported for that protocol are. The protocol is configured on the VIP independently of the ciphers. !TLSv1 would disable all ciphers supported under the TLSv1.0 protocol, but not the protocol itself. Note that the protocol negotiation and the cipher negotiation in the SSL/TLS handshake are independent. What happens if the VIP only supports TLSv1.0/v1.1/v1.2 and the client only supports SSLv3 & TLSv1.0? Well, they'd agree on TLSv1.0 as the common protocol. The cipher list the client sends in the Client Hello is independent of the protocol that is eventually negotiated. Say the client sends AES128-SHA and the server has that in its list, so it is selected. OK, we've agreed on a protocol and a cipher suite – only the server won't do any ciphers on TLSv1.0 because of '!TLSv1' in the ciphers configuration, and the connection will fail. That may seem like splitting hairs, but it makes a difference. If a scanner is looking for protocols that are enabled, and not the full handshake, it may still flag a system which has been configured this way. The protocol is negotiated during the SSL/TLS handshake before the cipher is selected. This also means the system is doing more work, as the handshake continues further before failing, and the log messages may be misleading. Instead of logging a protocol incompatibility the logs will reflect the failure to find a viable cipher, which can be a red herring when it comes time to debug the configuration. The right way to do this is to actually disable the protocol, which doesn't involve the cipher suite configuration at all. For the control plane this is done through the ssl-protocol directive: tmsh list sys http ssl-protocol sys httpd { ssl-protocol "all -SSLv2 -SSLv3" } For example, if we wanted to disable TLSv1.0: tmsh modify sys http ssl-protocol 'all -SSLv2 -SSLv3 -TLSv1' tmsh list sys http ssl-protocol sys httpd { ssl-protocol "all -SSLv2 -SSLv3 -TLSv1" } For the data plane this can be done via the Options List in the SSL Profile GUI, via the No SSL, No TLSv1.1, etc. directives: Or via the command line: tmsh list ltm profile client-ssl Test options ltm profile client-ssl Test { options { dont-insert-empty-fragments } } tmsh modify ltm profile client-ssl Test options {dont-insert-empty-fragments no-tlsv1} tmsh list /ltm profile client-ssl Test options ltm profile client-ssl Test { options { dont-insert-empty-fragments no-tlsv1 } } The values are slightly different on the command line, use this command to see them all: tmsh modify ltm profile client-ssl <profile-name> options ? Use the right tool for the job and you'll be more likely to succeed. Truncation As I previously mentioned, in versions up to 11.5.0 the ciphers configuration string was truncated at 256 bytes. Starting in 11.5.0 that was increased to 768 bytes (see K11481: The SSL profile cipher lists have a 256 character limitation for more information), but that can still silently truncate long configurations. This is not a theoretical issue, we've seen users run into this in the real world. For example, little over a year ago I worked with a customer who was then using 11.4.1 HF8. They were trying to very precisely control which ciphers were enabled, and their order. In order to do this they'd decided to enumerate every individual cipher in their configuration – resulting in this cipher suite configuration string: TLSv1_2+ECDHE-RSA-AES256-CBC-SHA:TLSv1_1+ECDHE-RSA-AES256-CBC-SHA:TLSv1_2+ECDHE-RSA-AES128-CBC-SHA:TLSv1_1+ECDHE-RSA-AES128-CBC-SHA:TLSv1_2+DHE-RSA-AES256-SHA:TLSv1_1+DHE-RSA-AES256-SHA:TLSv1_2+DHE-RSA-AES128-SHA:TLSv1_1+DHE-RSA-AES128-SHA:TLSv1_2+AES256-SHA256:TLSv1_1+AES256-SHA:TLSv1_2+AES128-SHA256:TLSv1_1+AES128-SHA:TLSv1+ECDHE-RSA-AES256-CBC-SHA:TLSv1+ECDHE-RSA-AES128-CBC-SHA:TLSv1+DHE-RSA-AES256-SHA:TLSv1+DHE-RSA-AES128-SHA:TLSv1+AES256-SHA:TLSv1+AES128-SHA:TLSv1+DES-CBC3-SHA That string would save in the configuration and it was there if you looked at the bigip.conf file, but it was silently truncated when the configuration was loaded. Since this was 11.4.1, only the first 256 bytes were loaded successfully, which made the running configuration: TLSv1_2+ECDHE-RSA-AES256-CBC-SHA:TLSv1_1+ECDHE-RSA-AES256-CBC-SHA:TLSv1_2+ECDHE-RSA-AES128-CBC-SHA:TLSv1_1+ECDHE-RSA-AES128-CBC-SHA:TLSv1_2+DHE-RSA-AES256-SHA:TLSv1_1+DHE-RSA-AES256-SHA:TLSv1_2+DHE-RSA-AES128-SHA:TLSv1_1+DHE-RSA-AES128-SHA:TLSv1_2+AES256-S Note the last suite is truncated itself, which means it was invalid and therefore ignored. If their configuration had worked they would've had nineteen protocol+suite combinations – instead they had eight. Needless to say, this caused some problems. This customer was missing ciphers that they expected to have working. That is bad enough – but it could be worse. Let's imagine a customer who wants to specify several specific ciphers first, then generally enable a number of other TLSv1.2 & TLSv1.1 ciphers. And, of course, they are careful to disable dangerous ciphers! TLSv1_2+ECDHE-RSA-AES256-CBC-SHA:TLSv1_1+ECDHE-RSA-AES256-CBC-SHA:TLSv1_2+ECDHE-RSA-AES128-CBC-SHA:TLSv1_1+ECDHE-RSA-AES128-CBC-SHA:TLSv1_2+DHE-RSA-AES256-SHA:TLSv1_1+DHE-RSA-AES256-SHA:TLSv1_2+DHE-RSA-AES128-SHA:TLSv1_1+DHE-RSA-AES128-SHA:TLSv1_2:TLSv1_1:!RC4:!MD5:!ADH:!DES:!EXPORT OK, that looks fairly solid, right? What do you suppose the problem with this is? This is the problem; in 11.4.1 and earlier it would truncate to this: TLSv1_2+ECDHE-RSA-AES256-CBC-SHA:TLSv1_1+ECDHE-RSA-AES256-CBC-SHA:TLSv1_2+ECDHE-RSA-AES128-CBC-SHA:TLSv1_1+ECDHE-RSA-AES128-CBC-SHA:TLSv1_2+DHE-RSA-AES256-SHA:TLSv1_1+DHE-RSA-AES256-SHA:TLSv1_2+DHE-RSA-AES128-SHA:TLSv1_1+DHE-RSA-AES128-SHA:TLSv1_2:TLSv1_1: All of the exclusions were truncated off! Now we have the opposite problem – there are a number of ciphers enabled which the customer expects to be disabled! And they're BAD ciphers – ADH, DES, MD5, RC4. So this customer would be at high risk without realizing it. Be aware of this; it is very sneaky. The configuration will look fine; the truncation happens in the code when it loads the configuration. This is also one reason why I always recommend listing your exclusions first in the configuration string. Then you can never accidentally enable something. Unintended Consequences Let's say a new CVE is announced which exposes a very serious vulnerability in SSLv3 & TLSv1.0. There is no way to mitigate it, and the only solution is to limit connections to only TLSv1.1 & TLSv1.2. You want a cipher configuration to accomplish this. It seems straight-forward – just configure it to use only ciphers on TLSv1.1 & TLSv1.2: tmsh modify ltm profile client-ssl <profile> ciphers 'TLSv1_2:TLSv1_1' Congratulations, you've solved the problem. You are no longer vulnerable to this CVE. You know there is a but coming, right? What's wrong? Well, you just enabled all TLSv1.2 & TLSv1.1 ciphers. That includes such gems as RC4-MD5, RC4-SHA, DES, and a few ADH (Anonymous Diffie-Hellman) suites which have no authentication. As recently as 11.3.0 you'd even be enabling some 40-bit EXPORT ciphers. (We pulled them out of NATIVE in 11.4.0.) So you just leapt out of the frying pan and into the fire. Always, always, always check the configuration before using it. Running that through tmm --clientciphers 'TLSv1_2:TLSv1_1' would've raised red flags. Instead, this configuration would work without causing those problems: tmsh modify ltm profile client-ssl <profile> ciphers 'DEFAULT:!TLSv1:!SSLv3' Another option, and probably the better one, is to disable the SSLv3 and TLSv1.0 protocols on the VIP. As I discussed above. Of course, you can do both – belt and suspenders. And just to show you how easy it is to make such a mistake, F5 did this! In K13400: SSL 3.0/TLS 1.0 BEAST vulnerability CVE-2011-3389 and TLS protocol vulnerability CVE-2012-1870 we originally had the following in the mitigation section: Note: Alternatively, to configure an SSL profile to use only TLS 1.1-compatible, TLS 1.2-compatible, AES-GCM, or RC4-SHA ciphers using the tmsh utility, use the following syntax: tmsh create /ltm profile client-ssl <name> ciphers TLSv1_1:TLSv1_2:AES-GCM:RC4-SHA Yes, I had this fixed long ago. Remember back in the section on keywords I had this comparison example: tmm --clientciphers 'DEFAULT' tmm --clientciphers 'DEFAULT:-3DES:!SSLv3:3DES+ECDHE:3DES+DHE:3DES+RSA' Who caught the '!SSLv3' in the second line? Why do you think I added that? Did I need to? Hint: What do you think the side effect of blanket enabling all of those 3DES ciphers would be if I didn't explicitly disable SSLv3? Cipher Ordering In SSL/TLS there are two main models to the cipher suite negotiation – Server Cipher Preference or Client Cipher Preference. What does this mean? In SSL/TLS the client sends the list of cipher suites it is willing and able to support in the Client Hello. The server also has its list of cipher suites that it is willing and able to support. In Client Cipher Preference the server will select the first cipher on the client's list that is also in the server's list. Effectively this gives the client influence over which cipher is selected based on the order of the list it sends. In Server Cipher Preference the server will select the first server on its own list that is also on the client's list. So the server gives the order of its list precedence. BIG-IP always operates in Server Cipher Preference, so be very careful in how you order your cipher suites. Preferred suites should go at the top of the list. How you order your cipher suites will directly affect which ciphers are used. It doesn't matter if a stronger cipher is available if a weak cipher is matched first. HTTP/2 How is HTTP/2 a pitfall? The HTTP/2 RFC7540 includes a blacklist of ciphers that are valid in TLS, but should not be used in HTTP/2. This can cause a problem on a server where the TLS negotiation is decoupled from the ALPN exchange for the higher level protocol. The server might select a cipher which is on the blacklist, and then when the connection attempts to step up to HTTP/2 via ALPN the client may terminate the connection with extreme prejudice. It is well known enough to be called out in the RFC – Section 9.2.2. F5 added support for HTTP/2 in 12.0.0 – and we fell into this trap. Our DEFAULT ciphers list was ordered such that it was almost certain a blacklisted cipher would be selected.; This was fixed in 12.0.0 HF3 and 12.1.0, but serves as an example. On 12.0.0 FINAL through 12.0.0 HF2 a simple fix was to configure the ciphers to be 'ECDHE+AES-GCM:DEFAULT'. ECDHE+AES-GCM is guaranteed to be supported by any client compliant with RFC7540 (HTTP/2). Putting it first ensures it is selected before any blacklisted cipher. 3DES Back in the section on ciphers I mentioned that we label 3DES as being 168-bit, but that it only provides the equivalent of 112-bit strength. So, what did I mean by that? DES operates on 64-bit data blocks, using 56-bits of key. So it has a strength of 2 56 . 3DES, aka Triple DES, was a stop-gap designed to stretch the life of DES once 56-bits was too weak to be safe, until AES became available. 3DES use the exact same DES cipher, it just uses it three times – hence the name. So you might think 3x56-bits = 168-bits. 2 168 strong. Right? No, not really. The standard implementation of 3DES is known as EDE – for Encrypt, Decrypt, Encrypt. (For reasons we don't need to get into here.) You take the 64-bit data block, run it through DES once to encrypt it with K 1 , then run it through again to decrypt it using K 2 , then encrypt it once again using K 3 . Three keys, that's still 168-bits, right? Well, you'd think so. But the devil is in the (implementation) details. First of all there are three keying options for 3DES: - Keying option 1: K1, K2, K3 – 168 unique bits (but only 112-bit strength!) - Keying option 2: K1, K2, K1 – 112 unique bits (but only 80-bit strength!) - Keying option 3: K1, K1, K1 – 56 unique bits, 56-bit strength (Equivalent to DES due to EDE!) F5 uses keying option one, so we have 168-bits of unique key. However, 3DES with keying option one is subject to a meet-in-the-middle cryptographic attack which only has a cost of 2 112 . It has even been reduced as low as 2 108 , as described in this paper. So it does not provide the expected 168-bits of security, and is in fact weaker than AES128. To add some confusion, due to an old issue we used to describe 3DES as being 192-bit. See: K17296: The BIG-IP system incorrectly reports a 192-bit key length for cipher suites using 3DES (DES-CBC3) for more details. Of course, with the appearance of the Sweet32 attack last fall I would encourage everyone to disable 3DES completely whenever possible. We're also seeing a growing number of scanners and audit tools recategorizing 3DES as a 'Medium' strength cipher, down from 'High', and correspondingly lowering the grade for any site still supporting it. If you don't need it, turn it off. See K13167034: OpenSSL vulnerability CVE-2016-2183 for more information. Conclusion Believe it or not, that's the quick overview of cipher suite configuration on BIG-IP. There are many areas where we could dig in further and spend some time in the weeds, but I hope that this article helps at least one person understand cipher suite configuration better, and to avoid the pitfalls that commonly claim those who work with them. Additional Resources This article is by no means comprehensive, and for those interested I'd encourage additional reading: BIG-IP SSL Cipher History by David Holmes, here on DevCentral Cipher Rules And Groups in BIG-IP v13 by Chase Abbott, also on DevCentral OpenSSL Cipher Documentation K8802: Using SSL ciphers with BIG-IP Client SSL and Server SSL profiles K15194: Overview of the BIG-IP SSL/TLS cipher suite K13163: SSL ciphers supported on BIG-IP platforms (11.x - 12.x) K13156: SSL ciphers used in the default SSL profiles (11.x - 12.x) K17370: Configuring the cipher strength for SSL profiles (12.x) K13171: Configuring the cipher strength for SSL profiles (11.x) K14783: Overview of the Client SSL profile (11.x - 12.x) K14806: Overview of the Server SSL profile (11.x - 12.x)21KViews9likes17CommentsTLS server_name extension based routing without clientssl profile
Problem this snippet solves: Some configuration requires to not decrypt SSL traffic on F5 appliances to select pool based on HTTP Host header. I found a useful irule and this code keeps the structure and most of binary commands of it. I'm not sure if the first author was Kevin Stewart or Colin Walker. thanks both of them to have provided such code. I worked to understand it reading TLS 1.2 RFC 5246 and TLS 1.3 draft-23 and provided some enhancements and following description with irule variables references. According to TLS 1.3 draft-23, this code will still be valid with next TLS version. the following network diagram shows one use cases where this code will help. This diagram show how this code works based on the tls_servername_routing_dg Datagroup values and detected server name and TLS versions detected in the CLIENT_HELLO packet. For performances reasons, only the first TCP data packet is analyzed. Versions : 1.1 : Updated to support TLS version detection and SSL offload feature. (05/03/2018) 1.2 : Updated to support TLS Handshake Failure Messages instead of reject. (09/03/2018) 1.3 : Updated to support node forwarding, logs only for debug (disabled with static variable), and changed the Datagroup name to tls_servername_routing_dg . (16/03/2018) 1.4 : Added 16K handshake length limit defined in RFC 1.2 in variable payload. (13/04/2018) 1.5 : Added supported version extension recursion, to bypass unknown TLS version if a known and allowed version is in the list. This correct an issue with Google chrome which include not documented TLS version on top of the list. (30/04/2018) How to use this snippet: create a virtual server with following configuration: type : Standard SSL Profile (client) : Only if you want to enable SSL offload for some pools irule : code bellow create all objects used in following datagroup (virtual servers, pools) create a data-group named tls_servername_routing_dg. if you want to forward to pool, add the value pool NameOfPool if you want to forward to pool and enable SSL Offload (ClientSSL profile must be enabled on virtual server), add the value pool NameOfPool ssl_offload if you want to forward to virtual server, add the value virtual NameOfVirtual if you want to forward to an IP address, add the value node IPOfServer , backend server will not be translated if you want to reject the connection with RFC compliant handshake_failure message, add the value handshake_failure if you want to reject the connection, add the value reject if you want to drop the connection, add the value drop The default value keyword is search if there is no TLS server name extension or if TLS server name extension is not found in the data group. here is an example: ltm data-group internal tls_servername_routing_dg { records { app1.company.com { data "virtual vs_app1.company.com" } app2.company.com { data "pool p_app2" } app3.company.com { data "pool p_app3 ssl_offload" } app4.company.com { reject } default { data "handshake_failure" } } type string } Code : when RULE_INIT { set static::sni_routing_debug 0 } when CLIENT_ACCEPTED { if { [PROFILE::exists clientssl] } { # We have a clientssl profile attached to this VIP but we need # to find an SNI record in the client handshake. To do so, we'll # disable SSL processing and collect the initial TCP payload. set ssldisable "SSL::disable" set sslenable "SSL::enable" eval $ssldisable } TCP::collect set default_pool [LB::server pool] set tls_servername "" set tls_handshake_prefered_version "0000" } when CLIENT_DATA { # Store TCP Payload up to 2^14 + 5 bytes (Handshake length is up to 2^14) set payload [TCP::payload 16389] set payloadlen [TCP::payload length] # - Record layer content-type (1 byte) --> variable tls_record_content_type # Handshake value is 22 (required for CLIENT_HELLO packet) # - SSLv3 / TLS version. (2 byte) --> variable tls_version # SSLv3 value is 0x0300 (doesn't support SNI, not valid in first condition) # TLS_1.0 value is 0x0301 # TLS_1.1 value is 0x0302, 0x0301 in CLIENT_HELLO handskake packet for backward compatibility (not specified in RFC, that's why the value 0x0302 is allowed in condition) # TLS_1.2 value is 0x0303, 0x0301 in CLIENT_HELLO handskake packet for backward compatibility (not specified in RFC, that's why the value 0x0303 is allowed in condition) # TLS_1.3 value is 0x0304, 0x0301 in CLIENT_HELLO handskake packet for backward compatibility (explicitly specified in RFC) # TLS_1.3 drafts values are 0x7FXX (XX is the hexadecimal encoded draft version), 0x0301 in CLIENT_HELLO handskake packet for backward compatibility (explicitly specified in RFC) # - Record layer content length (2 bytes) : must match payload length --> variable tls_recordlen # - TLS Hanshake protocol (length defined by Record layer content length value) # - Handshake action (1 byte) : CLIENT_HELLO = 1 --> variable tls_handshake_action # - handshake length (3 bytes) # - SSL / TLS handshake version (2 byte) # In TLS 1.3 CLIENT_HELLO handskake packet, TLS hanshake version is sent whith 0303 (TLS 1.2) version for backward compatibility. a new TLS extension add version negociation. # - hanshake random (32 bytes) # - handshake sessionID length (1 byte) --> variable tls_handshake_sessidlen # - handshake sessionID (length defined by sessionID length value, max 32-bit) # - CipherSuites length (2 bytes) --> variable tls_ciphlen # - CipherSuites (length defined by CipherSuites length value) # - Compression length (2 bytes) --> variable tls_complen # - Compression methods (length defined by Compression length value) # - Extensions # - Extension length (2 bytes) --> variable tls_extension_length # - list of Extensions records (length defined by extension length value) # - extension record type (2 bytes) : server_name = 0, supported_versions = 43--> variable tls_extension_type # - extension record length (2 bytes) --> variable tls_extension_record_length # - extension data (length defined by extension record length value) # # TLS server_name extension data format: # - SNI record length (2 bytes) # - SNI record data (length defined by SNI record length value) # - SNI record type (1 byte) # - SNI record value length (2 bytes) # - SNI record value (length defined by SNI record value length value) --> variable tls_servername # # TLS supported_version extension data format (added in TLS 1.3): # - supported version length (1 bytes) --> variable tls_supported_versions_length # - List of supported versions (2 bytes per version) --> variable tls_supported_versions # If valid TLS 1.X CLIENT_HELLO handshake packet if { [binary scan $payload cH4Scx3H4x32c tls_record_content_type tls_version tls_recordlen tls_handshake_action tls_handshake_version tls_handshake_sessidlen] == 6 && \ ($tls_record_content_type == 22) && \ ([string match {030[1-3]} $tls_version]) && \ ($tls_handshake_action == 1) && \ ($payloadlen == $tls_recordlen+5)} { # store in a variable the handshake version set tls_handshake_prefered_version $tls_handshake_version # skip past the session id set record_offset [expr {44 + $tls_handshake_sessidlen}] # skip past the cipher list binary scan $payload @${record_offset}S tls_ciphlen set record_offset [expr {$record_offset + 2 + $tls_ciphlen}] # skip past the compression list binary scan $payload @${record_offset}c tls_complen set record_offset [expr {$record_offset + 1 + $tls_complen}] # check for the existence of ssl extensions if { ($payloadlen > $record_offset) } { # skip to the start of the first extension binary scan $payload @${record_offset}S tls_extension_length set record_offset [expr {$record_offset + 2}] # Check if extension length + offset equals payload length if {$record_offset + $tls_extension_length == $payloadlen} { # for each extension while { $record_offset < $payloadlen } { binary scan $payload @${record_offset}SS tls_extension_type tls_extension_record_length if { $tls_extension_type == 0 } { # if it's a servername extension read the servername # SNI record value start after extension type (2 bytes), extension record length (2 bytes), record type (2 bytes), record type (1 byte), record value length (2 bytes) = 9 bytes binary scan $payload @[expr {$record_offset + 9}]A[expr {$tls_extension_record_length - 5}] tls_servername set record_offset [expr {$record_offset + $tls_extension_record_length + 4}] } elseif { $tls_extension_type == 43 } { # if it's a supported_version extension (starting with TLS 1.3), extract supported version in a list binary scan $payload @[expr {${record_offset} + 4}]cS[expr {($tls_extension_record_length -1)/2}] tls_supported_versions_length tls_supported_versions set tls_handshake_prefered_version [list] foreach version $tls_supported_versions { lappend tls_handshake_prefered_version [format %04X [expr { $version & 0xffff }] ] } if {$static::sni_routing_debug} {log local0. "[IP::remote_addr] : prefered version list : $tls_handshake_prefered_version"} set record_offset [expr {$record_offset + $tls_extension_record_length + 4}] } else { # skip over other extensions set record_offset [expr {$record_offset + $tls_extension_record_length + 4}] } } } } } elseif { [binary scan $payload cH4 ssl_record_content_type ssl_version] == 2 && \ ($tls_record_content_type == 22) && \ ($tls_version == 0300)} { # SSLv3 detected set tls_handshake_prefered_version "0300" } elseif { [binary scan $payload H2x1H2 ssl_version handshake_protocol_message] == 2 && \ ($ssl_version == 80) && \ ($handshake_protocol_message == 01)} { # SSLv2 detected set tls_handshake_prefered_version "0200" } unset -nocomplain payload payloadlen tls_record_content_type tls_recordlen tls_handshake_action tls_handshake_sessidlen record_offset tls_ciphlen tls_complen tls_extension_length tls_extension_type tls_extension_record_length tls_supported_versions_length tls_supported_versions foreach version $tls_handshake_prefered_version { switch -glob -- $version { "0200" { if {$static::sni_routing_debug} {log local0. "[IP::remote_addr] : SSLv2 ; connection is rejected"} reject return } "0300" - "0301" { if {$static::sni_routing_debug} {log local0. "[IP::remote_addr] : SSL/TLS ; connection is rejected (0x$version)"} # Handshake Failure packet format: # # - Record layer content-type (1 byte) --> variable tls_record_content_type # Alert value is 21 (required for Handshake Failure packet) # - SSLv3 / TLS version. (2 bytes) --> from variable tls_version # - Record layer content length (2 bytes) : value is 2 for Alert message # - TLS Message (length defined by Record layer content length value) # - Level (1 byte) : value is 2 (fatal) # - Description (1 bytes) : value is 40 (Handshake Failure) TCP::respond [binary format cH4Scc 21 $tls_version 2 2 40] after 10 TCP::close #drop #reject return } "030[2-9]" - "7F[0-9A-F][0-9A-F]" { # TLS version allowed, do nothing break } "0000" { if {$static::sni_routing_debug} {log local0. "[IP::remote_addr] : No SSL/TLS protocol detected ; connection is rejected (0x$version)"} reject return } default { if {$static::sni_routing_debug} {log local0. "[IP::remote_addr] : Unknown CLIENT_HELLO TLS handshake prefered version : 0x$version"} } } } if { $tls_servername equals "" || ([set sni_dg_value [class match -value [string tolower $tls_servername] equals tls_servername_routing_dg]] equals "")} { set sni_dg_value [class match -value "default" equals tls_servername_routing_dg] } switch [lindex $sni_dg_value 0] { "virtual" { if {[catch {virtual [lindex $sni_dg_value 1]}]} { if {$static::sni_routing_debug} {log local0. "[IP::remote_addr] : TLS server_name value = ${tls_servername} ; TLS prefered version = 0x${tls_handshake_prefered_version} ; Virtual server [lindex $sni_dg_value 1] doesn't exist"} } else { if {$static::sni_routing_debug} {log local0. "[IP::remote_addr] : TLS server_name value = ${tls_servername} ; TLS prefered version = 0x${tls_handshake_prefered_version} ; forwarded to Virtual server [lindex $sni_dg_value 1]"} } } "pool" { if {[catch {pool [lindex $sni_dg_value 1]}]} { if {$static::sni_routing_debug} {log local0. "[IP::remote_addr] : TLS server_name value = ${tls_servername} ; TLS prefered version = 0x${tls_handshake_prefered_version} ; Pool [lindex $sni_dg_value 1] doesn't exist"} } else { if {$static::sni_routing_debug} {log local0. "[IP::remote_addr] : TLS server_name value = ${tls_servername} ; TLS prefered version = 0x${tls_handshake_prefered_version} ; forwarded to Pool [lindex $sni_dg_value 1]"} } if {[lindex $sni_dg_value 2] equals "ssl_offload" && [info exists sslenable]} { eval $sslenable } } "node" { if {[catch {node [lindex $sni_dg_value 1]}]} { if {$static::sni_routing_debug} {log local0. "[IP::remote_addr] : TLS server_name value = ${tls_servername} ; TLS prefered version = 0x${tls_handshake_prefered_version} ; Invalid Node value [lindex $sni_dg_value 1]"} } else { if {$static::sni_routing_debug} {log local0. "[IP::remote_addr] : TLS server_name value = ${tls_servername} ; TLS prefered version = 0x${tls_handshake_prefered_version} ; forwarded to Node [lindex $sni_dg_value 1]"} } } "handshake_failure" { if {$static::sni_routing_debug} {log local0. "[IP::remote_addr] : TLS server_name value = ${tls_servername} ; TLS prefered version = 0x${tls_handshake_prefered_version} ; connection is rejected (with Handshake Failure message)"} TCP::respond [binary format cH4Scc 21 $tls_handshake_prefered_version 2 2 40] after 10 TCP::close return } "reject" { if {$static::sni_routing_debug} {log local0. "[IP::remote_addr] : TLS server_name value = ${tls_servername} ; TLS prefered version = 0x${tls_handshake_prefered_version} ; connection is rejected"} reject return } "drop" { if {$static::sni_routing_debug} {log local0. "[IP::remote_addr] : TLS server_name value = ${tls_servername} ; TLS prefered version = 0x${tls_handshake_prefered_version} ; connection is dropped"} drop return } } TCP::release }3.6KViews6likes10CommentsBIG-IP vWire Configuration
Introduction Theinsertion ofinlinesecurity and application delivery devices into anexisting network infrastructure canrequiresignificant networkre-design and architecture changes. Deploying tools that operatetransparentlyat Layer 2of the OSI model (L2)cangreatly reducethecomplexity anddisruption associated with theseimplementations. F5’s BIG-IP hardware appliances can be inserted as L2 devices in existing networks.Thiscan be achieved using either virtual Wire (vWire) or by bridging 2 Virtual LANs using aVLANGroups. This article focusses on the configuration of vWire on a standalone BIG-IP with 2 physical interface. The 2 physical interfaces are bridged together and allow traffic through the BIG-IP behaving like a wire. Note: Virtual Wire is available on BIG-IP hardware. For more informationon F5 security and other modules and their configurationplease refer towww.f5.comto access user guides, recommended practices andother deployment documentation.The configuration of BIG-IP modules, such as those providing DDoS protection/mitigation or SSL visibility, is beyond the scope of this article and is the subject of otheruser guides. Under the covers Building virtual wires leverages the underlying configuration of two separate VLAN objects that are bridged using a VLAN group.For convenience, going forward, one will be called the “ingress VLAN object” and the other one the “egress VLAN object”. This is significant because, you will be able to use these objects in your configuration to setup listeners and associate them to either VLAN object. Configuration Using the CLI Overview: Modify the 2 interfaces' mode to support virtual wire Create 2 VLAN objects using the interfaces selected above using VLAN id 4096 - this is the default "any" VLAN ID which will accept and forward all 802.1Q tagged traffic. Create 2 VLAN objects using the same interfaces above using the desired VLAN id (512 will be used as an example below) Create VLAN Groups to bridge the VLAN's created above Sample Configuration: The sample below creates a virtual wire that will work with 802.1Q VLAN id. 512. Configure interfaces to support virtual wire: root@(localhost)(cfg-sync Standalone)(Active)(/Common)(tmos)# modify net interface 1.1 port-fwd-mode virtual-wire root@(localhost)(cfg-sync Standalone)(Active)(/Common)(tmos)# modify net interface 1.2 port-fwd-mode virtual-wire Create all VLAN tag VLAN objects: root@(localhost)(cfg-sync Standalone)(Active)(/Common)(tmos)# create net vlan Direct_all_vlan_4096_1 tag 4096 interfaces add { 1.1 { tagged } } root@(localhost)(cfg-sync Standalone)(Active)(/Common)(tmos)# create net vlan Direct_all_vlan_4096_2 tag 4096 interfaces add { 1.2 { tagged } } Create specific (802.1Q tag 512) VLAN objects: root@(localhost)(cfg-sync Standalone)(Active)(/Common)(tmos)# create net vlan Direct_vlan_512_1 tag 512 interfaces add { 1.1 { tagged } } root@(localhost)(cfg-sync Standalone)(Active)(/Common)(tmos)# create net vlan Direct_vlan_512_2 tag 512 interfaces add { 1.2 { tagged } } Create VLAN Groups: root@(localhost)(cfg-sync Standalone)(Active)(/Common)(tmos)# create net vlan-group Direct_all_vlan members add { Direct_all_vlan_4096_1 Direct_all_vlan_4096_2 } mode virtual-wire root@(localhost)(cfg-sync Standalone)(Active)(/Common)(tmos)# create net vlan-group Direct_vlan_512 members add { Direct_vlan_512_1 Direct_vlan_512_2 } mode virtual-wire Don't forget to save: root@(localhost)(cfg-sync Standalone)(Active)(/Common)(tmos)# save sys config partitions all Using the WEBUI: Overview: There is a single interface to create and configure the necessary configuration objects. Create a virtual wire with the desired interfaces Associate VLANs that will be used by the BIG-IP function (e.g. SSL Orchestrator, Traffic Manager, etc.) Apply the configuration Sample Configuration: From the BIG-IP WebUI (Network>>Virtual Wire): Select Create (upper right) Enter the values for interfaces added to the virtual wire Enter VLAN information and click on Add for every VLAN object created Once the all the selections are made and you are ready to implement, click on "Commig Changes to System": The resulting screen will look like the following: The resulting VLAN configuration will look as follows: Notable Effects-Caveats Virtual Wire Created Through WebUI Configuring vWire via the WebUI will result in creating the aforementioned VLANs automatically.During the creation process, an identifier is appended to the VLAN object-name.This identifier will vary from one BIG-IP to another. When deploying a pair of BIG-IP’s in HA mode, the virtual wire configuration will create objects with different names on each BIG-IP.So for example, the creation of vwire_lab01 will result in the creation of VLAN objects vwire_lab01_1_567 and vwire_lab01_2_567 on one BIG-IP, while the other BIG-IP will have vwire_lab01_1_000 and vwire_lab01_2_000 in its configuration.For modules like SSL Orchestrator, or in cases where a Virtual Server needs to be associated with a specific VLAN, the numbering is problematic. The administrator will not be able to associate the topology or Virtual Server to one VLAN object (vwire_lab01_2_567) on the first BIG-IP and the other VLAN object (vwire_lab01_2_000) on the peer BIG-IP.(this is not possible for a number of reasons, one of which is the way configurations are synchronized between BIG-IP devices) This results in the necessary manual configuration using the procedure described above. VLAN Objects Available for Configuration After creating virtual wire objects, VLANs are available for you to configure the desired services. This includes BIG-IP LTM or SSL Orchestrator objects allowing you to take different actions when traffic comes in one or the other "side" of the virtual wire. For example, you might want connections initiated from the LAN (in the picture above) to be decrypted for security inspection purposes, while having traffic coming in from the firewall passed through transparently. Conclusion Deploying the BIG-IP in virtual wire mode provides a great way to insert services into your network without affecting the rest of the network configuration, routing and forwarding. The flexibility of the BIG-IP allows you to control the traffic traversing the BIG-IP on what ever VLAN (tagged or not). I hope this has been useful.3.1KViews6likes9CommentsCOVID-19 Response: F5 Certifications Q&A
F5 knows that COVID-19 restrictions greatly affect your ability to schedule and attend exam certification appointments. No candidate will lose certification as a result of these extraordinary events. AskF5 published K25023468: COVID-19 update for F5 Certifications, which provides answers to the following questions: What is F5 going to do to solve this? I got notified that my certification is expiring/expired, but I cannot schedule an exam; what am I supposed to do? Why can’t you just extend certifications to stop the messages and prevent the certifications from reporting as expiring/expired? Will F5 implement online proctored exams like some other organizations are doing?1.2KViews5likes0CommentsBIGdiff
Problem this snippet solves: This is a bash script to help when doing changes to F5 devices. The script will collect the status of the objects before and after the change, compare them and produce an HTML file with the results. Examples of objects are LTM virtual servers and GTM wide IPs. The script will also create the files you will need in case things go wrong (UCS/QKView/Logs). The most common scenario to use the script will be an upgrade. You run the script before the upgrade, upgrade the device, and run the script again. The HTML file will give you the results, and it will indicate if something went down after the upgrade. You can also use the script when copying the configuration from one device to another (configuration migration). Also, consolidation, when copying the configuration from multiple devices to a single device. Lastly, you can use the script in any scenario where you think that could be an impact on the F5 device. Let’s assume you are doing major routing changes to your network, and there is a possibility things go down on the F5 devices. You can run the script before those changes, perform the changes, and run the script again. The HTML file will give you the results, and it will indicate if something changed after you performed the change. Important Note: If you have a high availability (HA) pair or a device group with more than 2 devices, each device performs monitoring independently. This means you need to run the script on each device. How to use this snippet: See the instructions on GitHub: https://github.com/leonardobdes/BIGdiff1.6KViews4likes11CommentsLightboard Lessons: standard virtual server behavior when no pool members are available
In this episode of Lightboard Lessons, Jason answers a question from a member of the community about BIG-IP's full proxy architecture and the relationship between the clientside TCP session and its serverside counterpart when there are no pool members available. Packet Capture Details In each of the following sections, you'll find the packet captures between the client and the BIG-IP, and where appropriate, between the BIG-IP and the server. Standard HTTP Virtual Server, SSL, Pool Available In this first capture, everything is working as expected. Standard HTTP Virtual Server, SSL, Pool Unavailable Now, the pool members are all down and the virtual server state is down. Note that even though there are no back-end resources available to manage the client connection, the client-side TCP and SSL handshakes complete before the BIG-IP acknowledges and resets the connection. This makes sense, as the server-side of the connection is not initiated until the application request arrives. With SSL, that means the handshake must occur before the request can be decrypted and read. Standard HTTP Virtual Server, SSL w/ discard iRule, Pool Unavailable Even though it is expected, it might not be desirable for the BIG-IP to respond to the client at all if the back-end resources are unavailable. I had a use case for this way back in my customer days. My global load balancer (that was not an F5 device) marked its pool members up if it received any response at all, even if that response was a "successful" TCP/SSL handshake that resulted in an immediate RST. By applying this iRule that checks for the available state of the pool members and discards packets when there are none, you can prevent responses altogether. when FLOW_INIT { if { [active_members testpool] < 1 } { discard } } Standard HTTP Virtual Server, SSL w/ reject iRule, Pool Unavailable You might however need to be a good netizen for your particular clients and alert immediately that your service is not available without tying up the resources of your TCP and SSL stacks. In this case you can alter the iRule to reject instead of discard. when FLOW_INIT { if { [active_members testpool] < 1 } { reject } }1.7KViews4likes7CommentsVerify change in behavior for (major) software updates
Dear all, I can remember there was a cool feature within ihealth, where you could perform some kind of simulation for a software update and the output was telling you, which of your configuration items needs to be adjusted before/after the change and where is a change in behavior. This was removed I think already several years ago 😞 Therefor my question, is there something similar available or what's the latest recommendation from F5 for a major software update (e.g. from 13.1.5 to 16.x) to check any "conflicts" with the existing configuration. Thank you! Regards Stefan 🙂486Views3likes2CommentsQuick and dirty shell script to find unused certificates
Problem this snippet solves: This has been edited quite a bit since I first posted so it's probably not as quick and dirty as it was before. This in response to a question regarding removing unused certificateshttps://devcentral.f5.com/questions/how-to-find-the-unused-ssl-certificates-63166 The following bash script will output any installed certificate names to a file, then iterate over each line. If the certificate is not referenced in bigip.conf in either the /config/ or within a partition folder, then it can be reasonably assumed it is not in use and can be safely deleted. The script will give you the option to delete any certs that are not in use and save a UCS archive (just in case) If there are any keys associated with the certificate, this will be deleted too. As the moment, the script will not look for keys without an equivalent cert, e.g. my-cert.key and my-cert.crt. So you many still end up with rouge keys. I'll look to get this updated eventually. There is an array called ignoreCerts ignoreCerts=("f5-irule.crt" "ca-bundle.crt") Here you can add certificates you may want to ignore. For example, f5-irule.crt is used to sign F5 provided iRules and bigip.conf does not reference it. Add any additional certs to this array to ensure they are not deleted Script can be downloaded directly from GitLab using the link below https://gitlab.com/stratalabs/f5-devcental/snippets/1863498/raw?inline=false How to use this snippet: paste into vi chmod +x myScript.sh ./myScript.sh Code : #!/bin/sh function buildInstalledCertsArray { tmsh save sys config partitions all tmsh list sys file ssl-cert | awk '/crt/ {print $4}' | sed '/^[[:space:]]*$/d' > /var/tmp/installedCerts.tmp # iterate over tmp file to create array of used certificates while read line; do for i in "${!ignoreCerts[@]}"; do if [[ $line = ${ignoreCerts[$i]} ]]; then ignore="true" else if [[ $ignore != "true" ]];then ignore="" else # do not add cert to array if already added if [[ ! " ${instCertsArr[@]} " =~ " ${line} " ]]; then instCertsArr+=("$line") fi fi fi done done /dev/null 2>&1) if ! [ -z "$hasKey" ];then deleteKeys+=("${cert%.*}.key") fi done } function deleteUnusedCerts { if [ ${#deleteCerts[@]} -eq 0 ]; then echo "-------------------------------------------------------------------------" echo "There are no unused certificates to delete, existing" echo "-------------------------------------------------------------------------" exit 0 else echo "-------------------------------------------------------------------------" echo "The following keys are not in use can can be deleted:" for cert in "${deleteCerts[@]}"; do echo " ${cert}" done echo "-------------------------------------------------------------------------" read -p "would you like to delete these unused certificates? (y/n)?" answer case ${answer:0:1} in y|Y ) createUcsArchive echo "-------------------------------------------------------------------------" echo "deleting certs..." for cert in "${deleteCerts[@]}"; do delete sys file ssl-key $cert echo " $cert" done if [ ${#deleteKeys[@]} -eq 0 ]; then echo "-------------------------------------------------------------------------" echo "no associated keys to delete, exiting" exit 0 else echo "-------------------------------------------------------------------------" echo "deleting keys..." for key in "${deleteKeys[@]}"; do delete sys file ssl-key $cert echo "$key" exit 0 done fi ;; * ) exit 0 ;; esac fi } function createUcsArchive { echo today=`date +%Y-%m-%d.%H.%M.%S` echo "Creating UCS archive auto.${today}.ucs" tmsh save sys ucs ${today}.ucs } # initialise vars instCertsArr=() deleteCerts=() # ignore certs defined here - f5-irile.crt is used to sign F5 iRules ignoreCerts=("f5-irule.crt" "ca-bundle.crt") # build installed certificates array - excluding certs to ignore buildInstalledCertsArray # check if installed certs are used in bigip.conf (including partitions) - ltm sys files are exluded from results buildDeleteCertsArray # build list of associated keys (not all certs will have keys) buildDeleteKeysArray # optionally delete unused certs deleteUnusedCerts Tested this on version: No Version Found1.8KViews3likes7CommentsUpgrade your BIG-IP systems for more secure apps
Keeping your BIG-IP software up to date ensures you have access to advanced capabilities and higher-quality, more secure releases. At a minimum, F5 recommends implementing BIG-IP 14.1.0 across your BIG-IP fleet.BIG-IP 15.1.0 and 16.0.0 will reward you with the most advanced BIG-IP functionality, including new protocol support and security capabilities. Walkthrough Videos For a walkthrough of three common upgrade scenarios, watch the following videos: Performing a software upgrade on a BIG-IP system (standalone) Updating BIG-IP HA systems with a point release Upgrading BIG-IP VIPRION vCMP systems Automation For information about upgrading with the assistance of automation, watch DevCentral Connects: Automating Software Updates with BIG-IQ or Ansible. Official Training F5 has temporarily, and until further notice, made the following training available for free: BIG-IP Fundamentals: Upgrading a BIG-IP System --- For more information about upgrading, refer to the F5 page on BIG-IP upgrade.349Views3likes1Comment