Distributed Cloud
20 TopicsVIPTest: Rapid Application Testing for F5 Environments
VIPTest is a Python-based tool for efficiently testing multiple URLs in F5 environments, allowing quick assessment of application behavior before and after configuration changes. It supports concurrent processing, handles various URL formats, and provides detailed reports on HTTP responses, TLS versions, and connectivity status, making it useful for migrations and routine maintenance.664Views5likes2CommentsExperience the power of F5 NGINX One with feature demos
Introduction Introducing F5 NGINX One, a comprehensive solution designed to enhance business operations significantly through improved reliability and performance. At the core of NGINX One is our data plane, which is built on our world-class, lightweight, and high-performance NGINX software. This foundation provides robust traffic management solutions that are essential for modern digital businesses. These solutions include API Gateway, Content Caching, Load Balancing, and Policy Enforcement. NGINX One includes a user-friendly, SaaS-based NGINX One Console that provides essential telemetry and overseas operations without requiring custom development or infrastructure changes. This visibility empowers teams to promptly address customer experience, security vulnerabilities, network performance, and compliance concerns. NGINX One's deployment across various environments empowers businesses to enhance their operations with improved reliability and performance. It is a versatile tool for strengthening operational efficiency, security posture, and overall digital experience. on Delivery and Management NGINX One has several promising features on the horizon. Let's highlight three key features: Monitor Certificates and CVEs, Editing and Update Configurations, and Config Sync Groups. Let's delve into these in details. Monitor Certificates and CVE’s: One of NGINX One's standout features is its ability to monitor Common Vulnerabilities and Exposures (CVEs) and Certificate status. This functionality is crucial for maintaining application security integrity in a continually evolving threat landscape. The CVE and Certificate Monitoring capability of NGINX One enables teams to: Prioritize Remediation Efforts: With an accurate and up-to-date database of CVEs and a comprehensive certificate monitoring system, NGINX One assists teams in prioritizing vulnerabilities and certificate issues according to their severity, guaranteeing that essential security concerns are addressed without delay. Maintain Compliance: Continuous monitoring for CVEs and certificates ensures that applications comply with security standards and regulations, crucial for industries subject to stringent compliance mandates. Edit and Update Configurations: This feature empowers users to efficiently edit configurations and perform updates directly within the NGINX One Console interface. With Configuration Editing, you can: Make Configuration Changes: Quickly adapt to changing application demands by modifying configurations, ensuring optimal performance and security. Simplify Management: Eliminate the need to SSH directly into each instance to edit or update configurations. Reduce Errors: The intuitive interface minimizes potential errors in configuration changes, enhancing reliability by offering helpful recommendations. Enhance Automation with NGINX One SaaS Console: Integrates seamlessly into CI/CD and GitOps workflows, including GitHub, through a comprehensive set of APIs. Config Sync Groups: The Config Sync Group feature is invaluable for environments running multiple NGINX instances. This feature ensures consistent configurations across all instances, enhancing application reliability and reducing administrative overhead. The Config Sync Group capability offers: Automated Synchronization: Configurations are seamlessly synchronized across NGINX instances, guaranteeing that all applications operate with the most current and secure settings. When a configuration sync group already has a defined configuration, it will be automatically pushed to instances as they join. Scalability Support: Organizations can easily incorporate new NGINX instances without compromising configuration integrity as their infrastructure expands. Minimized Configuration Drift: This feature is crucial for maintaining consistency across environments and preventing potential application errors or vulnerabilities from configuration discrepancies. Conclusion NGINX One Cloud Console redefines digital monitoring and management by combining all the NGINX core capabilities and use cases. This all-encompassing platform is equipped with sophisticated features to simplify user interaction, drastically cut operational overhead and expenses, bolster security protocols, and broaden operational adaptability. Read our announcement blog for more details on the launch. To explore the platform’s capabilities and see it in action, we invite you to tune in to our webinar on September 25th. This is a great opportunity to witness firsthand how NGINX One can revolutionize your digital monitoring and management strategies.762Views4likes1CommentHow I Did it - Migrating Applications to Nutanix NC2 with F5 Distributed Cloud Secure Multicloud Networking
In this edition of "How I Did it", we will explore how F5 Distributed Cloud Services (XC) enables seamless application extension and migration from an on-premises environment to Nutanix NC2 clusters.825Views4likes0CommentsHow I did it - “Delivering Kasm Workspaces three ways”
Securing modern, containerized platforms like Kasm Workspaces requires a robust and multi-faceted approach to ensure performance, reliability, and data protection. In this edition of "How I did it" we'll see how F5 technologies can enhance the security and scalability of Kasm Workspaces deployments.327Views2likes0CommentsF5 Distributed Cloud Customer Edge on F5 rSeries – Reference Architecture
Traditionally, to advertise an application to the internet or to connect applications across multi-cloud environments enterprises must configure and manage multiple networking and security devices from different vendors in the DMZ of the data center. CE on F5 rSeries is a single vendor, converged solution for all enterprise multi-cloud application connectivity and security needs.1.4KViews2likes2CommentsF5 Distributed Cloud - Mitigation for Cross Tenant Origin Exposure (CTOE)
F5 Distributed Cloud (XC) offers a suite of powerful features designed to simplify the lives of administrators and engineers. A key aspect of this ease of use comes from shared objects, such as Regional Edge Proxies which utilize well-known public IP addresses. However, while this shared infrastructure enhances scalability and efficiency, it can also present risks if leveraged by attackers; and in this case, cross tenant origin exposure (CTOE). For instance: Customer(x) has tenant(x) in XC with a Load Balancer pointing to their public IP origin servers. These may be behind a perimeter firewall NAT (as diagrammed below) or be actual public IPs on the servers. Customers perimeter firewall is configured to deny all inbound traffic to public IP for site1.example.com Perimeter Firewall is configured to allow inbound traffic to public IP for site1.example.com for XC IP’s. (which is a well-known and public shared IP range) XC Proxy IP’s Reference Doc This setup is generally considered a minimum best practice because it restricts traffic to only those sources originating from XC. However, depending on the organization’s risk appetite, this level of security may be insufficient. The Risk Another account/tenant(y) within Distributed Cloud could create a load balancer and point to the public IP or DNS name of the origin pools for tenant(x). The attacker must know or learn the actual origin servers IP, or network segment to perform this attack. This discovery is fairly trivial and there are many approaches. In addition, what if the origin pool in tenant(x) is pointing to a DNS name that resolves to public IP’s? This is common with SaaS API gateways such as AWS and Azure to name a few and these gateways all use the same DNS name for the gateway respective to their cloud. Same DNS = Same IP’s = Easy to learn or guess Origin IP’s. For instance a common flow where a customer is using XC for WAF/WAAP and a 3rd party SAAS solution for an APIGW, may be Client–>XC(LB-WAAP)–>APIGW(pub-ip)–>API. In this default configuration, an attacker could learn the customers public NAT IP and add it to their Origin Pool. They can now instantiate attacks from their tenant(y) which will be sourced from the XC IP’s and allowed by the customer(x) perimeter firewall. Mitigation There are at least 4 ways to mitigate this risk. 1. L7 Header - If the origin servers (on-prem or SAAS) have something in front of them that is “L7 aware” or they themselves can be configured to do header validation, a custom HTTP request header could be injected into the flow by the load balancer in “tenant x”. Tenant y would not know or be able to see this header. Of course traffic not containing this header would still make it all the way to the L7 aware service before being dropped. While this would suffice for a L7 DoS or or other L7 type attack, it would not help with a L3/4 type attack which could still make it’s way through the infrastructure. 2. MTLS - A unique differentiator for F5 XC, is our ability to use server-side MTLS. If a customer has the capability on the Web Server/Service or something in front of it similar to the previous L7 header example, then we can add an additional layer of source validation by using mutual certificate authentication (mtls). Even a self-signed cert would add a lot of value here. No cert = no layer 7 access to the app or service. This does not prevent an L3/4 attack but will prevent unwanted application access. 3. Customer Edge (CE) proxies are deploy-able software that creates a private mesh back to our Application Delivery Network (ADN). These come with additional cost and need to be deployed at each location, thus creating a private mesh or overlay network that is unavailable outside of the tenant. in this scenario, the attacker traffic could potentially make it to the public IP of (or in front of) the CE and be dropped, thus protecting the application itself but still potentially allowing bad L3/4. 4. Private Link is a paid add-on to XC that enables connectivity between XC, clients, and resources. It offers many advantages, particularly when addressing regulatory and other security compliance requirements. Perimeter firewall rules can be simplified to allow traffic exclusively from Private Links, which are accessible only from the designated tenancy. Private Links can mitigate L3-L7 attacks because the link is entirely private by design. XC Private Link Overview A Word on L3/4 DDoS: L3/4 attacks were brought up several times above when talking about the technicalities of each mitigation method. While a L3/4 attack is not always distributed by nature, most are. One very important concept to keep in mind is the fact that XC natively provides L3/4 DDoS mitigation at our Regional Edges. Even in the examples above where “attack” traffic could make it all the way to the app or at least to the perimeter, if it was a true DDoS, this would get picked up by our Regional Edges and automatically mitigated. Conclusion In today’s interconnected cloud ecosystems, mitigating CTOE attacks is crucial to maintaining service availability and performance. By understanding the vulnerabilities that stem from cross-cloud communications and applying best practices, organizations can safeguard their systems from exploitation. As we continue to expand our cloud footprints, proactive security measures are not only necessary but must evolve alongside the complexity of the environments we manage. Effective CTOE prevention is an essential part of ensuring a resilient, high-performing network in this cloud-driven world. Like this article? Please drop a like or line below!140Views1like2CommentsSeamless Application Migration to OpenShift Virtualization with F5 Distributed Cloud
As organizations endeavor to modernize their infrastructure, migrating applications to advanced virtualization platforms like Red Hat OpenShift Virtualization becomes a strategic imperative. However, they often encounter challenges such as minimizing downtime, maintaining seamless connectivity, ensuring consistent security, and reducing operational complexity. Addressing these challenges is crucial for a successful migration. This article explores how F5 Distributed Cloud (F5 XC), in collaboration with Red Hat's Migration Toolkit for Virtualization (MTV), provides a robust solution to facilitate a smooth, secure, and efficient migration to OpenShift Virtualization. The Joint Solution: F5 XC CE and Red Hat MTV Building upon our previous work on deploying F5 Distributed Cloud Customer Edge (XC CE) in Red Hat OpenShift Virtualization, we delve into the next phase of our joint solution with Red Hat. By leveraging F5 XC CE in both VMware and OpenShift environments, alongside Red Hat’s MTV, organizations can achieve a seamless migration of virtual machines (VMs) from VMware NSX to OpenShift Virtualization. This integration not only streamlines the migration process but also ensures continuous application performance and security throughout the transition. Key Components: Red Hat Migration Toolkit for Virtualization (MTV): Facilitates the migration of VMs from VMware NSX to OpenShift Virtualization, an add-on to OpenShift Container Platform F5 Distributed Cloud Customer Edge (XC CE) in VMware: Manages and secures application traffic within the existing VMware NSX environment. F5 XC CE in OpenShift: Ensures consistent load balancing and security in the new OpenShift Virtualization environment. Demonstration Architecture To illustrate the effectiveness of this joint solution, let’s delve into the Demo Architecture employed in our demo: The architecture leverages F5 XC CE in both environments to provide a unified and secure load balancing mechanism. Red Hat MTV acts as the migration engine, seamlessly transferring VMs while F5 XC CE manages traffic distribution to ensure zero downtime and maintain application availability and security. Benefits of the Joint Solution 1. Seamless Migration: Minimal Downtime: The phased migration approach ensures that applications remain available to users throughout the process. IP Preservation: Maintaining the same IP addresses reduces the complexity of network reconfiguration and minimizes potential disruptions. 2. Enhanced Security: Consistent Policies: Security measures such as Web Application Firewalls (WAF), bot detection, and DoS protection are maintained across both environments. Centralized Management: F5 XC CE provides a unified interface for managing security policies, ensuring robust protection during and after migration. 3. Operational Efficiency: Unified Platform: Consolidating legacy and cloud-native workloads onto OpenShift Virtualization simplifies management and enhances operational workflows. Scalability: Leveraging Kubernetes and OpenShift’s orchestration capabilities allows for greater scalability and flexibility in application deployment. 4. Improved User Experience: Continuous Availability: Users experience uninterrupted access to applications, unaware of the backend migration activities. Performance Optimization: Intelligent load balancing ensures optimal application performance by efficiently distributing traffic across environments. Watch the Demo Video To see this joint solution in action, watch our detailed demo video on the F5 DevCentral YouTube channel. The video walks you through the migration process, showcasing how F5 XC CE and Red Hat MTV work together to facilitate a smooth and secure transition from VMware NSX to OpenShift Virtualization. Conclusion Migrating virtual machines (VMs) from VMware NSX to OpenShift Virtualization is a significant step towards modernizing your infrastructure. With the combined capabilities of F5 Distributed Cloud Customer Edge and Red Hat’s Migration Toolkit for Virtualization, organizations can achieve this migration with confidence, ensuring minimal disruption, enhanced security, and improved operational efficiency. Related Articles: Deploying F5 Distributed Cloud Customer Edge in Red Hat OpenShift Virtualization BIG-IP VE in Red Hat OpenShift Virtualization VMware to Red Hat OpenShift Virtualization Migration OpenShift Virtualization306Views1like0CommentsDeploying F5 Distributed Cloud Customer Edge in Red Hat OpenShift Virtualization
Introduction Red Hat OpenShift Virtualization is a feature that brings virtual machine (VM) workloads into the Kubernetes platform, allowing them to run alongside containerized applications in a seamless, unified environment. Built on the open-source KubeVirt project, OpenShift Virtualization enables organizations to manage VMs using the same tools and workflows they use for containers. Why OpenShift Virtualization? Organizations today face critical needs such as: Rapid Migration: "I want to migrate ASAP" from traditional virtualization platforms to more modern solutions. Infrastructure Modernization: Transitioning legacy VM environments to leverage the benefits of hybrid and cloud-native architectures. Unified Management: Running VMs alongside containerized applications to simplify operations and enhance resource utilization. OpenShift Virtualization addresses these challenges by consolidating legacy and cloud-native workloads onto a single platform. This consolidation simplifies management, enhances operational efficiency, and facilitates infrastructure modernization without disrupting existing services. Integrating F5 Distributed Cloud Customer Edge (XC CE) into OpenShift Virtualization further enhances this environment by providing advanced networking and security capabilities. This combination offers several benefits: Multi-Tenancy: Deploy multiple CE VMs, each dedicated to a specific tenant, enabling isolation and customization for different teams or departments within a secure, multi-tenant environment. Load Balancing: Efficiently manage and distribute application traffic to optimize performance and resource utilization. Enhanced Security: Implement advanced threat protection at the edge to strengthen your security posture against emerging threats. Microservices Management: Seamlessly integrate and manage microservices, enhancing agility and scalability. This guide provides a step-by-step approach to deploying XC CE within OpenShift Virtualization, detailing the technical considerations and configurations required. Technical Overview Deploying XC CE within OpenShift Virtualization involves several key technical steps: Preparation Cluster Setup: Ensure an operational OpenShift cluster with OpenShift Virtualization installed. Access Rights: Confirm administrative permissions to configure compute and network settings. F5 XC Account: Obtain access to generate node tokens and download the XC CE images. Resource Optimization: Enable CPU Manager: Configure the CPU Manager to allocate CPU resources effectively. Configure Topology Manager: Set the policy to single-numa-node for optimal NUMA performance. Network Configuration: Open vSwitch (OVS) Bridges: Set up OVS bridges on worker nodes to handle networking for the virtual machines. NetworkAttachmentDefinitions (NADs): Use Multus CNI to define how virtual machines attach to multiple networks, supporting both external and internal connectivity. Image Preparation: Obtain XC CE Image: Download the XC CE image in qcow2 format suitable for KubeVirt. Generate Node Token: Create a one-time node token from the F5 Distributed Cloud Console for node registration. User Data Configuration: Prepare cloud-init user data with the node token and network settings to automate the VM initialization process. Deployment: Create DataVolumes: Import the XC CE image into the cluster using the Containerized Data Importer (CDI). Deploy VirtualMachine Resources: Apply manifests to deploy XC CE instances in OpenShift. Network Configuration Setting up the network involves creating Open vSwitch (OVS) bridges and defining NetworkAttachmentDefinitions (NADs) to enable multiple network interfaces for the virtual machines. Open vSwitch (OVS) Bridges Create a NodeNetworkConfigurationPolicy to define OVS bridges on all worker nodes: apiVersion: nmstate.io/v1 kind: NodeNetworkConfigurationPolicy metadata: name: ovs-vms spec: nodeSelector: node-role.kubernetes.io/worker: '' desiredState: interfaces: - name: ovs-vms type: ovs-bridge state: up bridge: allow-extra-patch-ports: true options: stp: true port: - name: eno1 ovn: bridge-mappings: - localnet: ce2-slo bridge: ovs-vms state: present Replace eno1 with the appropriate physical network interface on your nodes. This policy sets up an OVS bridge named ovs-vms connected to the physical interface. NetworkAttachmentDefinitions (NADs) Define NADs using Multus CNI to attach networks to the virtual machines. External Network (ce2-slo): External Network (ce2-slo): Connects VMs to the physical network with a specific VLAN ID. This setup allows the VMs to communicate with external systems, services, or networks, which is essential for applications that require access to resources outside the cluster or need to expose services to external users. apiVersion: k8s.cni.cncf.io/v1 kind: NetworkAttachmentDefinition metadata: name: ce2-slo namespace: f5-ce spec: config: | { "cniVersion": "0.4.0", "name": "ce2-slo", "type": "ovn-k8s-cni-overlay", "topology": "localnet", "netAttachDefName": "f5-ce/ce2-slo", "mtu": 1500, "vlanID": 3052, "ipam": {} } Internal Network (ce2-sli): Internal Network (ce2-sli): Provides an isolated Layer 2 network for internal communication. By setting the topology to "layer2", this network operates as an internal overlay network that is not directly connected to the physical network infrastructure. The mtu is set to 1400 bytes to accommodate any overhead introduced by encapsulation protocols used in the internal network overlay. apiVersion: k8s.cni.cncf.io/v1 kind: NetworkAttachmentDefinition metadata: name: ce2-sli namespace: f5-ce spec: config: | { "cniVersion": "0.4.0", "name": "ce2-sli", "type": "ovn-k8s-cni-overlay", "topology": "layer2", "netAttachDefName": "f5-ce/ce2-sli", "mtu": 1400, "ipam": {} } VirtualMachine Configuration Configuring the virtual machine involves preparing the image, creating cloud-init user data, and defining the VirtualMachine resource. Image Preparation Obtain XC CE Image: Download the qcow2 image from the F5 Distributed Cloud Console. Generate Node Token: Acquire a one-time node token for node registration. Cloud-Init User Data Create a user-data configuration containing the node token and network settings: #cloud-config write_files: - path: /etc/vpm/user_data content: | token: <your-node-token> slo_ip: <IP>/<prefix> slo_gateway: <Gateway IP> slo_dns: <DNS IP> owner: root permissions: '0644' Replace placeholders with actual network configurations. This file automates the VM's initial setup and registration. VirtualMachine Resource Definition Define the VirtualMachine resource, specifying CPU, memory, disks, network interfaces, and cloud-init configurations. Resources: Allocate sufficient CPU and memory. Disks: Reference the DataVolume containing the XC CE image. Interfaces: Attach NADs for network connectivity. Cloud-Init: Embed the user data for automatic configuration. Conclusion Deploying F5 Distributed Cloud CE in OpenShift Virtualization enables organizations to leverage advanced networking and security features within their existing Kubernetes infrastructure. This integration facilitates a more secure, efficient, and scalable environment for modern applications. For detailed deployment instructions and configuration examples, please refer to the attached PDF guide. Related Articles: BIG-IP VE in Red Hat OpenShift Virtualization VMware to Red Hat OpenShift Virtualization Migration OpenShift Virtualization633Views1like0CommentsF5 XC Session tracking with User Identification Policy
With F5 AWAF/ASM there is feature called session tracking that allows tracking and blocking users that do too many violations not only based on IP address but also things like the BIG-IP AWAF/ASM session cookie. What about F5 XC Distributed Cloud? Well now we will answer that question 😉 Why tracking on ip addresses some times is not enough? XC has a feature called malicious users that allows to block users if they generate too many service policy, waf , bot or other violations. By default users are tracked based on source IP addresses but what happens if there are proxies before the XC Cloud or NAT devices ? Well then all traffic for many users will come from a single ip address and when this IP address is blocked many users will get blocked, not just the one that did the violation. Now that we answered this question lets see what options we have. Reference: AI/ML detection of Malicious Users using F5 Distributed Cloud WAAP Trusted Client IP header This option is useful when the client real ip addresses are in something like a XFF header that the proxy before the F5 XC adds. By enabling this option automatically XC will use this header not the IP packet to get the client ip address and enforce Rate Limiting , Malicious Users blocking etc. Even in the XC logs now the ip address in the header will be shown as a source IP and if there is no such header the ip address in the packet will be used as backup. Reference: How to setup a Client IP as the Source IP on the HTTP Load Balancer headers? – F5 Distributed Cloud Services (zendesk.com) Overview of Trusted Client IP Headers in F5 Distributed Cloud Platform User Identification Policies The second more versatile feature is the XC user identification policies that by default is set to "Client IP" that will be the client ip from the IP packet or if "Trusted Client IP header" is configured the IP address from the configured header will be used. When customizing the feature allows the use of TLS fingerprints , HTTP headers like the "Authorization" header and more options to track the users and enforce rate limiters on them or if they make too many violations and Malicious users is enabled to block them based on the configured identifier if they make too many waf violations and so much more. The user identification will failover to the ip address in the packet if it can't identify the source user but multiple identification rules could be configured and evaluated one after another, as to only failover to the packet ip address if an identification rule can't be matched! If the backend upstream origin server application cookie is used for user identification and XC WAF App firewall is enabled and you can also use Cookie protection to protect the cookie from being send from another IP address! A nice option is that you can search the request and security logs using the "user id" as by default in XC for example you can't search the logs using the Authorization header that for example OAUTH and API traffic uses or a cookie like the session JSESSION or PHPSSEID but this way you can! The demo juice shop app at https://demo.owasp-juice.shop/ can be used for such testing! References Lab 3: Malicious Users (f5.com) Malicious Users | F5 Distributed Cloud Technical Knowledge Configuring user session tracking (f5.com) How to configure Cookie Protection – F5 Distributed Cloud Services (zendesk.com) Configure Rate Limiting per User | F5 Distributed Cloud Technical Knowledge184Views1like0Comments