xc
6 TopicsF5 Distributed Cloud - Mitigation for Cross Tenant Origin Exposure (CTOE)
F5 Distributed Cloud (XC) offers a suite of powerful features designed to simplify the lives of administrators and engineers. A key aspect of this ease of use comes from shared objects, such as Regional Edge Proxies which utilize well-known public IP addresses. However, while this shared infrastructure enhances scalability and efficiency, it can also present risks if leveraged by attackers; and in this case, cross tenant origin exposure (CTOE). For instance: Customer(x) has tenant(x) in XC with a Load Balancer pointing to their public IP origin servers. These may be behind a perimeter firewall NAT (as diagrammed below) or be actual public IPs on the servers. Customers perimeter firewall is configured to deny all inbound traffic to public IP for site1.example.com Perimeter Firewall is configured to allow inbound traffic to public IP for site1.example.com for XC IP’s. (which is a well-known and public shared IP range) XC Proxy IP’s Reference Doc This setup is generally considered a minimum best practice because it restricts traffic to only those sources originating from XC. However, depending on the organization’s risk appetite, this level of security may be insufficient. The Risk Another account/tenant(y) within Distributed Cloud could create a load balancer and point to the public IP or DNS name of the origin pools for tenant(x). The attacker must know or learn the actual origin servers IP, or network segment to perform this attack. This discovery is fairly trivial and there are many approaches. In addition, what if the origin pool in tenant(x) is pointing to a DNS name that resolves to public IP’s? This is common with SaaS API gateways such as AWS and Azure to name a few and these gateways all use the same DNS name for the gateway respective to their cloud. Same DNS = Same IP’s = Easy to learn or guess Origin IP’s. For instance a common flow where a customer is using XC for WAF/WAAP and a 3rd party SAAS solution for an APIGW, may be Client–>XC(LB-WAAP)–>APIGW(pub-ip)–>API. In this default configuration, an attacker could learn the customers public NAT IP and add it to their Origin Pool. They can now instantiate attacks from their tenant(y) which will be sourced from the XC IP’s and allowed by the customer(x) perimeter firewall. Mitigation There are at least 4 ways to mitigate this risk. 1. L7 Header - If the origin servers (on-prem or SAAS) have something in front of them that is “L7 aware” or they themselves can be configured to do header validation, a custom HTTP request header could be injected into the flow by the load balancer in “tenant x”. Tenant y would not know or be able to see this header. Of course traffic not containing this header would still make it all the way to the L7 aware service before being dropped. While this would suffice for a L7 DoS or or other L7 type attack, it would not help with a L3/4 type attack which could still make it’s way through the infrastructure. 2. MTLS - A unique differentiator for F5 XC, is our ability to use server-side MTLS. If a customer has the capability on the Web Server/Service or something in front of it similar to the previous L7 header example, then we can add an additional layer of source validation by using mutual certificate authentication (mtls). Even a self-signed cert would add a lot of value here. No cert = no layer 7 access to the app or service. This does not prevent an L3/4 attack but will prevent unwanted application access. 3. Customer Edge (CE) proxies are deploy-able software that creates a private mesh back to our Application Delivery Network (ADN). These come with additional cost and need to be deployed at each location, thus creating a private mesh or overlay network that is unavailable outside of the tenant. in this scenario, the attacker traffic could potentially make it to the public IP of (or in front of) the CE and be dropped, thus protecting the application itself but still potentially allowing bad L3/4. 4. Private Link is a paid add-on to XC that enables connectivity between XC, clients, and resources. It offers many advantages, particularly when addressing regulatory and other security compliance requirements. Perimeter firewall rules can be simplified to allow traffic exclusively from Private Links, which are accessible only from the designated tenancy. Private Links can mitigate L3-L7 attacks because the link is entirely private by design. XC Private Link Overview A Word on L3/4 DDoS: L3/4 attacks were brought up several times above when talking about the technicalities of each mitigation method. While a L3/4 attack is not always distributed by nature, most are. One very important concept to keep in mind is the fact that XC natively provides L3/4 DDoS mitigation at our Regional Edges. Even in the examples above where “attack” traffic could make it all the way to the app or at least to the perimeter, if it was a true DDoS, this would get picked up by our Regional Edges and automatically mitigated. Conclusion In today’s interconnected cloud ecosystems, mitigating CTOE attacks is crucial to maintaining service availability and performance. By understanding the vulnerabilities that stem from cross-cloud communications and applying best practices, organizations can safeguard their systems from exploitation. As we continue to expand our cloud footprints, proactive security measures are not only necessary but must evolve alongside the complexity of the environments we manage. Effective CTOE prevention is an essential part of ensuring a resilient, high-performing network in this cloud-driven world. Like this article? Please drop a like or line below!109Views1like2CommentsF5 XC Session tracking with User Identification Policy
With F5 AWAF/ASM there is feature called session tracking that allows tracking and blocking users that do too many violations not only based on IP address but also things like the BIG-IP AWAF/ASM session cookie. What about F5 XC Distributed Cloud? Well now we will answer that question 😉 Why tracking on ip addresses some times is not enough? XC has a feature called malicious users that allows to block users if they generate too many service policy, waf , bot or other violations. By default users are tracked based on source IP addresses but what happens if there are proxies before the XC Cloud or NAT devices ? Well then all traffic for many users will come from a single ip address and when this IP address is blocked many users will get blocked, not just the one that did the violation. Now that we answered this question lets see what options we have. Reference: AI/ML detection of Malicious Users using F5 Distributed Cloud WAAP Trusted Client IP header This option is useful when the client real ip addresses are in something like a XFF header that the proxy before the F5 XC adds. By enabling this option automatically XC will use this header not the IP packet to get the client ip address and enforce Rate Limiting , Malicious Users blocking etc. Even in the XC logs now the ip address in the header will be shown as a source IP and if there is no such header the ip address in the packet will be used as backup. Reference: How to setup a Client IP as the Source IP on the HTTP Load Balancer headers? – F5 Distributed Cloud Services (zendesk.com) Overview of Trusted Client IP Headers in F5 Distributed Cloud Platform User Identification Policies The second more versatile feature is the XC user identification policies that by default is set to "Client IP" that will be the client ip from the IP packet or if "Trusted Client IP header" is configured the IP address from the configured header will be used. When customizing the feature allows the use of TLS fingerprints , HTTP headers like the "Authorization" header and more options to track the users and enforce rate limiters on them or if they make too many violations and Malicious users is enabled to block them based on the configured identifier if they make too many waf violations and so much more. The user identification will failover to the ip address in the packet if it can't identify the source user but multiple identification rules could be configured and evaluated one after another, as to only failover to the packet ip address if an identification rule can't be matched! If the backend upstream origin server application cookie is used for user identification and XC WAF App firewall is enabled and you can also use Cookie protection to protect the cookie from being send from another IP address! The demo juice shop app at https://demo.owasp-juice.shop/ can be used for such testing! References Lab 3: Malicious Users (f5.com) Malicious Users | F5 Distributed Cloud Technical Knowledge Configuring user session tracking (f5.com) How to configure Cookie Protection – F5 Distributed Cloud Services (zendesk.com)100Views0likes0CommentsIs it possible to let the F5 XC provide different cerificate by path
Hi Everyone, The customer has an IoT server that provides different functions by path, and it's all HTTPS service. Only the path "/uisgw2/" needs to enable the mTLS during the SSL handshake. The other paths just provide a server cerificate without mTLS. I was wondering if is it possible to set up on F5 XC? Thanks in advanced DingSolved79Views0likes3CommentsF5 Distributed Cloud – CE High Availability Options: A Comparative Exploration
This article explores an alternative approach to achieve HA across single CE nodes, catering for use cases requiring higher performance and granular control over redundancy and failover management. Introduction F5 Distributed Cloud offers different techniques to achieve High Availability (HA) for Customer Edge (CE) nodes in an active-active configuration to provide redundancy, scaling on-demand and simplify management. By default, F5 Distributed Cloud uses a method for clustering CE nodes, in which CEs keep track of peers by sending heartbeats and facilitating traffic exchange among themselves. This method also handles the automatic transfer of traffic, virtual IPs, and services between CE peers —excellent for simplified deployment and running App Stack sites hosting Kubernetes workloads. However, if CE nodes are deployed mainly to manage L3/L7 traffic and application security, this default model might lack the flexibility needed for certain scenarios. Many of our customers tell us that achieving high availability is not so straightforward with the current clustering model. These customers often have a lot of experience in managing redundancy and high availability across traditional network devices. They like to manage everything themselves—from scheduling when to switch over to a redundant pair (planned failover), to choosing how many network paths (tunnels) to use between CEs to REs (Regional Edges) or other CEs. They also want to handle any issues device by device, decide the number of CE nodes in a redundancy group, and be able to direct traffic to different CEs when one is being updated. Their feedback inspired us to write this article, where we explore a different approach to achieve high availability across CEs. The default clustering model is explained in this document: https://docs.cloud.f5.com/docs/ves-concepts/site#cluster-of-nodes Throughout this article, we will dive into several key areas: An overview of the default CE clustering model, highlighting its inherent challenges and advantages. Introduction to an alternative clustering strategy: Single Node Clustering, including: An analysis of its challenges and benefits. Identification of scenarios where this approach is most applicable. A guide to the configuration steps necessary to implement this model. An exploration of failover behavior within this framework. A comparison table showing how this new method differs from the default clustering method. By the end of this article, readers will gain an understanding of both clustering approaches, enabling informed decisions on the optimal strategy for their specific needs. Default CE Clustering Overview In a standard CE clustering setup, a cluster must have at least three Master nodes, with subsequent additions acting as Worker nodes. A CE cluster is configured as a "Site," centralizing operations like pool configuration and software upgrades to simplify management. In this clustering method, frequent communication is required between control plane components of the nodes on a low latency network. When a failover happens, the VIPs and services - including customer’s compute workloads - will transition to the other active nodes. As shown in the picture above, a CE cluster is treated as a single site, regardless of the number of nodes it contains. In a Mesh Group scenario, each mesh link is associated with one single tunnel connected to the cluster. These tunnels are distributed among the master nodes in the cluster, optimizing the total number of tunnels required for a large-scale Mesh Group. It also means that the site will be connected to REs only via 2 tunnels – one to each RE. Design Considerations for Default CE Clustering model: Best suited for: 1- App Stack Sites: Running Kubernetes workloads necessitates the default clustering method for container orchestration across nodes. 2- Large-scale Site-Mesh Groups (SMG) 3- Cluster-wide upgrade preference: Customers who favour managing nodes collectively will find cluster-wide upgrades more convenient, however without control over the upgrade sequence of individual nodes. Challenges: o Network Bottleneck for Ingress Traffic: A cluster connected to two Regional Edge (RE) sites via only 2 tunnels can lead to only two nodes processing external (ingress) traffic, limiting the use of additional nodes to process internal traffic only. o Three-master node requirement: Some customers are accustomed to dual-node HA models and may find the requirement for three master nodes resource-intensive. o Hitless upgrades: Controlled, phased upgrades are preferred by some customers for testing before widespread deployment, which is challenging with cluster-wide upgrades. o Cross-site deployments: High network latency between remote data centers can impact cluster performance due to the latency sensitivity of etcd daemon, the backbone of cluster state management. If the network connection across the nodes gets disconnected, all nodes will most likely stop the operation due to the quorum requirements of etcd. Therefore, F5 recommends deploying separate clusters for different physical sites. o Service Fault Sprawl and limited Node fault tolerance: Default clusters can sometimes experience a cascading effect where a fault in a node spreads throughout the cluster. Additionally, a standard 3-node cluster can generally only tolerate the failure of two nodes. If the cluster was originally configured with three nodes, functionality may be lost if reduced to a single active node. These limitations stem from the underlying clustering design and its dependency on etcd for maintaining cluster state. The Alternative Solution: HA Between Multiple Single Nodes The good news is that we can achieve the key objectives of the clustering – which are streamlined management and high availability - without the dependency on the control plane clustering mechanisms. Streamlined management using “Virtual Site”: F5 Distributed Cloud provides a mechanism called “Virtual Site” to perform operations on a group of sites (site = node or cluster of nodes), reducing the need to repeat the same set of operations for each site. The “Virtual Site” acts as an abstraction layer, grouping nodes tagged with a unique label and allows collectively addressing these nodes as a single entity. Configuration of origin pools and load balancers can reference Virtual Sites instead of individual sites/nodes, to facilitate cluster-like management for two or more nodes and enabling controlled day 2 operations. When a node is disassociated from Virtual Site by removing the label, it's no longer eligible for new connections, and its listeners are simultaneously deactivated. Upgrading nodes is streamlined: simply remove the node's label to exclude it from the Virtual Site, perform the upgrade, and then reapply the label once the node is operational again. This procedure offers you a controlled failover process, ensuring minimal disruption and enhanced manageability by minimizing the blast radius and limiting the cope of downtime. As traffic is rerouted to other CEs, if something goes wrong with an upgrade of a CE node, the services will not be impacted. HA/Redundancy across multiple nodes: Each single node in a Virtual Site connect to dual REs through IPSec or SSL/TLS tunnels, ensuring even load distribution and true active-active redundancy. External (Ingress) Traffic: In the Virtual Site model, the Regional Edges (REs) distribute external traffic evenly across all nodes. This contrasts with the default clustering approach where only two CE nodes are actively connected to the REs. The main Virtual Site advantage lies in its true active/active configuration for CEs, increasing the total ingress traffic capacity. If a node becomes unavailable, the REs will automatically reroute the new connections to another operational node within the Virtual Site, and the services (connection to origin pools) remain uninterrupted. Internal (East-West) Traffic: For managing internal traffic within a single CE node in a Virtual Site (for example, when LB objects are configured to be advertised within the local site), all network techniques applicable to the default clustering model can be employed in this model as well, except for the Layer 2 attachment (VRRP) method. Preferred load distribution method for internal traffic across CEs: Our preferred methods for load balancing across CE nodes are either DNS based load balancing or Equal-Cost Multi-Path (ECMP) routing utilizing BGP for redundancy. DNS Load Balancer Behavior: If a node is detached from a Virtual Site, its associated listeners and Virtual IPs (VIPs) are automatically withdrawn. Consequently, the DNS load balancer's health checks will mark those VIPs as down and prevent them from receiving internal network traffic. Current limitation for custom VIP and BGP: When using BGP, please note a current limitation that prevents configuring a custom VIP address on the Virtual Site. As a workaround, custom VIPs should be advertised on individual sites instead. The F5 product team is actively working to address this gap. For a detailed exploration of traffic routing options to CEs, please refer to the following article here: https://community.f5.com/kb/technicalarticles/f5-distributed-cloud---customer-edge-site---deployment--routing-options/319435 Design Considerations for Single Node HA Model: Best suited for: 1- Customers with high throughput requirement: This clustering model ensures that all Customer Edge (CE) nodes are engaged in managing ingress traffic from Regional Edges (REs), which allows for scalable expansion by adding additional CEs as required. In contrast, the default clustering model limits ingress traffic processing to only two CE nodes per cluster, and more precisely, to a single node from each RE, regardless of the number of worker nodes in the cluster. Consequently, this model is more advantageous for customers who have high throughput demands. 2- Customers who prefer to use controlled failover and software upgrades This clustering model enables a sequential upgrade process, where nodes are updated individually to ensure each node upgrades successfully before moving on to the other nodes. The process involves detaching the node from the cluster by removing its site label, which causes redirecting traffic to the remaining nodes during the upgrade. Once upgraded, the label is reapplied, and this process is repeated for each node in turn. This is a model that customers have known for 20+ years for upgrade procedures, with a little wrinkle with the label. 3- Customers who prefer to distribute the load across remote sites Nodes are deployed independently and do not require inter-node heartbeat communication, unlike the default clustering method. This independence allows for their deployment across various data centers and availability zones while being managed as a single entity. They are compatible with both Layer 2 (L2) spanned and Layer 3 (L3) spanned data centers, where nodes in different L3 networks utilize distinct gateways. As long as the nodes can access the origin pools, they can be integrated into the same "Virtual Site". This flexibility caters to customers' traditional preferences, such as deploying two CE nodes per location, which is fully supported by this clustering model. Challenges: Lack of VRRP Support: The primary limitation of this clustering method is the absence of VRRP support for internal VIPs. However, there are some alternative methods to distribute internal traffic across CE nodes. These include DNS based routing, BGP with Equal-Cost Multi-Path (ECMP) routing, or the implementation of CEs behind another Layer 4 (L4) load balancer capable of traffic distribution without source address alteration, such as F5 BIG-IPs or the standard load balancers provided by Azure or AWS. Limitation on Custom VIP IP Support: Currently, the F5 Distributed Cloud Console has a restriction preventing the configuration of custom virtual IPs for load balancer advertisements on Virtual Sites. We anticipate this limitation will be addressed in future updates to the F5 Distributed Cloud platform. As a temporary solution, you can advertise the LB across multiple individual sites within the Virtual Site. This approach enables the configuration of custom VIPs on those sites. Requires extra steps for upgrading nodes Unlike the Default clustering model where upgrades can be performed collectively on a group of nodes, this clustering model requires upgrading nodes on an individual basis. This may introduce more steps, especially in larger clusters, but it remains significantly simpler than traditional network device upgrades. Large-Scale Mesh Group: In F5 Distributed Cloud, the "Mesh Group" feature allows for direct connections between sites (whether individual CE sites or clusters of CEs) and other selected sites through IPSec tunnels. For CE clusters, tunnels are established on a per-cluster basis. However, for single-node sites, each node creates its own tunnels to connect with remote CEs. This setup can lead to an increased number of tunnels needed to establish the mesh. For example, in a network of 10 sites configured with dual-CE Virtual Sites, each CE is required to establish 18 IPSec tunnels to connect with other sites, or 19 for a full mesh configuration. Comparatively, a 10-site network using the default clustering method—with a minimum of 3 CEs per site—would only need up to 9 tunnels from each CE for full connectivity. Opting for Virtual Sites with dual CEs, a common choice, effectively doubles the number of required tunnels from each CE when compared to the default clustering setup. However, despite this increase in tunnels, opting for a Mesh configuration with single-node clusters can offer advantages in terms of performance and load distribution. Note: Use DC Groups as an alternative solution to Secure Mesh Group for CE connectivity: For customers with existing private connectivity between their CE nodes, running Site Mesh Group (SMG) with numerous IPsec tunnels can be less optimal. As a more scalable alternative for these customers, we recommend using DC Cluster Group (DCG). This method utilizes IP-in-IP tunnels over the existing private network, eliminating the need for individual encrypted IPsec tunnels between each node and streamlining communication between CE nodes via IP-n-IP encapsulations. Configuration Steps The configuration for creating single node clusters involves the following steps: Creating a Label Creating a Virtual Site Applying the label to the CE nodes (sites) Review and validate the configuration The detailed configuration guide for the above steps can be found here: https://docs.cloud.f5.com/docs/how-to/fleets-vsites/create-virtual-site Example Configuration: In this example, you can create a label called "my-vsite" to group CE nodes that belong to the same Virtual Site. Within this label, you can then define different values to represent different environments or clusters, such as specific Azure region or an on-premise data center. Then a Virtual Site of “CE” type can be created to represent the CE cluster in “Azure-AustraliaEast-vSite" and tied to any CE that is tagged with the label “my-vsite=Azure-AustraliaEast-vSite”: Now, any CE node that should join the cluster (Virtual Site), should get this label: Verification: To confirm the Virtual Site configuration is functioning as intended, we joined two CEs (k1-azure-ce2 and k1-azure-ce03) into the Virtual Site and evaluated the routing and load balancing behavior. Test 1: Public Load Balancer (Virtual Site referenced in the pool) The diagram shows a public "Load Balancer" advertised on the RE referencing a pool that uses the newly created Virtual Site to access the private application: As shown below, the pool member was configured to be accessed through the Virtual Site: Analysis of the request logs in the Performance dashboard confirmed that all requests to the public website were evenly distributed across both CEs. Test 2: Internal Load Balancer (LB advertised on the Virtual Site) We deployed an internal Load Balancer and advertised it on the newly created Virtual Site, utilizing the pool that also references the same Virtual Site (k1-azure-ce2 and k1-azure-ce03). As shown below, the Load Balancer was configured to be advertised on the Virtual Site. Note: Here we couldn't use a "shared" custom VIP across the Virtual Site due to a current platform constraint. If a custom VIP is required, we should use "site" as opposed to "Virtual Site" and advertise the Load Balancer on all sites, like below picture: Request logs revealed that when traffic reached either CE node within the Virtual Site, the request was processed and forwarded locally to the pool member. In the example below: src_site: Indicates the CE (k1-azure-ce2) that processed the request. src_ip: Represents the client's source IP address (192.168.1.68). dst_site: Indicates the CE (k1-azure-ce2) from which the pool member is accessed. dst_ip: Represents the IP address of the pool member (192.168.1.6). Resilience Testing: To assess the Virtual Site's resilience, we intentionally blocked network access from k1-azure-ce2 CE to the pool member (192.168.1.6). The CE automatically rerouted traffic to the pool member via the other CE (k1-azure-ce03) in the Virtual Site. Note:By default, CEs can communicate with each other via the F5 Global Network. This can be customized to use direct connectivity through tunnels if the CEs are members of the same DC Cluster Group (IP-n-IP tunneling) or Secure Mesh Groups (IPSec tunneling). The following picture shows the traffic flow via F5 Global Network. The following picture shows the traffic flow via the IP-n-IP tunnel when a DC Clustering Group (DCG) is configured across the CE nodes. Failover Behaviour When a CE node is tied to a Virtual Site, all internal Load Balancers (VIPs) advertised on that Virtual Site will be deployed in the CE. Additionally, the Regional Edge (RE) begins to use this node as one of the potential next hops for connections to the origin pool. Should the CE become unavailable, or if it lacks the necessary network access to the origin server, the RE will almost seamlessly reroute connections through the other operational CEs in the Virtual Site. Uncontrolled Failover: During instances of uncontrolled failover, such as when a node is unexpectedly shut down from the hypervisor, we have observed a handful of new connections experiencing timeouts. However, these issues were resolved by implementing health checks within the origin pool, which prevented any subsequent connection drops. Note: Irrespective of the clustering model in use, it's always recommended to configure health checks for the origin pool. This practice enhances failover responsiveness and mitigates any additional latency incurred during traffic rerouting. Controlled Failover: The moment a CE node is disassociated from the Virtual Site — by the removal of its label— the CE node will not be used by RE to connect to origin pools anymore. At the same time, all Load Balancer listeners associated with that Virtual Site are withdrawn from the node. This effectively halts traffic processing for those applications, preventing the node from receiving related traffic. During controlled failover scenarios, we have observed seamless service continuity on externally advertised services (to REs). On-Demand Scaling: F5 Distributed Cloud provides a flexible solution that enables customers to scale the number of active CE nodes according to demand. This allows you to easily add more powerful CE nodes during peak periods (such as promotional events) and then remove them when demand subsides. With the Virtual Sites method, you can even mix and match node sizes within your cluster (Virtual Site), providing granular control over resources. It's advisable to monitor CE node performance and implement node related alerts. These alerts notify you when nodes are operating at high capacity, allowing for timely addition of extra nodes as needed. Moreover, you can monitor node’s health in the dashboard. CPU, Memory and Disk utilizations of nodes can be a good factor in determining if more nodes are needed or not. Furthermore, the use of Virtual Sites makes managing this process even easier, thanks to labels. Node Based Alerts: Node-based alerts are essential for maintaining efficient CE operations. Accessing the alerts in the Console: To view alerts, go to Multi-Cloud Network Connect > Notifications > Alerts. Here, you can see both "Active Alerts" and "All Alerts." Alerts related to node health fall under the "infrastructure" alert group. The following screenshot shows alerts indicating high loads on the nodes. Configuring Alert Policies: Alert policies determine the notification process for raised alerts. To set up an alert policy, navigate to Multi-Cloud Network Connect > Alerts Management > Alert Policies. An alert policy consists of two main elements: the alert receiver configuration and the policy rules. Configuring Alert Receiver: The configuration allows for integration with platforms like Slack and PagerDuty, among others, facilitating notifications through commonly used channels. Configuring Alert Rules: For alert selection, we recommend configuring notifications for alerts with severity of “Major” or “Critical” at a minimum. Alternatively, the “infrastructure” group which includes node-based alerts can be selected. Comparison Table Criteria Default Cluster Single Node HA Minimum number of nodes in HA 3 2 Upgrade operations Per cluster Per Node Network redundancy and client side routing for east-west traffic VRRP, BGP, DNS, L4/7 LB DNS, L4/7 LB, BGP* Tunnels to RE 2 tunnels per cluster 2 tunnels per node Tunnels to other CEs (SMG or DCG) 1 tunnel from each cluster 1 tunnel from each node External traffic processing Limited to 2 nodes All nodes will be active Internal traffic processing All nodes can be active All nodes can be active Scale management in Public Cloud Sites Straightforward, by configuring ingress interfaces in Azure/AWS/GCP sites Straightforward, by adding or removing the labels Scale management in Secure Mesh Sites Requires reconfiguring the cluster (secure mesh site) - may cause interruption Straightforward, by adding or removing the labels Custom VIP IP Available Not Available (Planned to be available in future releases), workaround available. Node sizes All nodes should be same size. Upgrading node size in a cluster is a disruptive operation. Any node sizes or clusters can join the Virtual Site * When using BGP, please note a current limitation that prevents configuring custom VIP address on the Virtual Site. Conclusion: F5 Distributed Cloud offers a flexible approach to High Availability (HA) across CE nodes, allowing customers to select the redundancy model that best fits their specific use cases and requirements. While we continue to advocate for default clustering approach due to their operational simplicity and shared VRRP VIP or, unified network configuration benefits, especially for routine tasks like upgrades, the Virtual Site and single node HA model presents some great use cases. It not only addresses the limitations and challenges of the default clustering model, but also introduces a solution that is both scalable and adaptable. While Virtual Sites offer their own benefits, we recognize they also present trade-offs. The overall benefits, particularly for scenarios demanding high ingress (RE to CE) throughput and controlled failover capabilities cater to specific customer demands. The F5 product and development team remains committed to addressing the limitations of both default clustering and Virtual Sites discussed throughout this article. Their focus is on continuous improvement and finding the solutions that best serve our customers' needs. References and Additional Links: Default Clustering model: https://docs.cloud.f5.com/docs/ves-concepts/site#cluster-of-nodes Configuration guide for Virtual Sites:https://docs.cloud.f5.com/docs/how-to/fleets-vsites/create-virtual-site Routing Options for CEs:https://community.f5.com/kb/technicalarticles/f5-distributed-cloud---customer-edge-site---deployment--routing-options/319435 Configuration guide for DC Clustering Group:https://docs.cloud.f5.com/docs/how-to/advanced-networking/configure-dc-cluster-group1.7KViews5likes0CommentsF5 XC Distributed Cloud HTTP Header manipulations and matching of the client ip/user HTTP headers
1 . F5 XC distributed cloud HTTP Header manipulations In the F5 XC Distributed Cloud some client information is saved to variables that can be inserted in HTTP headers similar to how F5 Big-IP saves some data that can after that be used in a iRule or Local Traffic Policy. By default XC will insert XFF header with the client IP address but what if the end servers want an HTTP header with another name to contain the real client IP. Under the HTTP load balancer under "Other Options" under "More Options" the "Header Options" can be found. Then the the predefined variables can be used for this job like in the example below the $[client_address] is used. A list of the predefined variables for F5 XC: https://docs.cloud.f5.com/docs/how-to/advanced-security/configure-http-header-processing There is $[user] variable and maybe in the future if F5 XC does the authentication of the users this option will be insert the user in a proxy chaining scenario but for now I think that this just manipulates data in the XAU (X-Authenticated-User) HTTP header. 2. Matching of the real client ip HTTP headers You can also match a XFF header if it is inserted by a proxy device before the F5 XC nodes for security bypass/blocking or for logging in the F5 XC. For User logging from the XFF Under "Common Security Controls" create a "User Identification Policy". You can also match a regex that matches the ip address and this is in case there are multiple IP addresses in the XFF header as there could have been many Proxy devices in the data path and we want see if just one is present. For Security bypass or blocking based based on XFF Under "Common Security Controls" create a "Trusted Client Rules" or "Client Blocking Rules". Also if you have "User Identification Policy" then you can just use the "User Identifier" but it can't use regex in this case. To match a regex value in the header that is just a single IP address, even when the header has many ip addresses, use the regex (1\.1\.1\.1) as an example to mach address 1.1.1.1. To use the client IP address as a source Ip address to the backend Origin Servers in the TCP packet after going through the F5 XC (similar to removing the SNAT pool or Automap in F5 Big-IP) use the option below: The same way the XAU (X-Authenticated-User) HTTP header can be used in a proxy chaining topology, when there is a proxy before the F5 XC that has added this header. Edit: Keep in mind that in some cases in the XC Regex for example (1\.1\.1\.1) should be written without () as 1\.1\.1\.1 , so test it as this could be something new and I have seen it in service policy regex matches, when making a new custom signature that was not in WAAP WAF XC policy. I could make a seperate article for this 🙂2.7KViews8likes1Comment