tmos
1662 TopicsSNI Routing with BIG-IP
In the previous article, The Three HTTP Routing Patterns, Lori MacVittie covers 3 methods of routing. Today we will look at Server Name Indication (SNI) routing as an additional method of routing HTTPS or any protocol that uses TLS and SNI. Using SNI we can route traffic to a destination without having to terminate the SSL connection. This enables several benefits including: Reduced number of Public IPs Simplified configuration More intelligent routing of TLS traffic Terminating SSL Connections When you havea SSL certificate and key you can perform the cryptographic actions required to encrypt traffic using TLS. This is what I refer to as “terminating the SSL connection” throughout this article. When you want to route traffic this is a chickenand an egg problem, becausefor TLS traffic you want to be able to route the traffic by being able to inspect the contents, but this normally requires being able to “terminate the SSL connection”. The goal of this article is to layer in traffic routing for TLS traffic without having to require having/knowing the original SSL certificate and key. Server Name Indication (SNI) SNI is a TLS extension that makes it possible to "share" certificates on a single IP address. This is possible due to a client using a TLS extension that requests a specific name before the server responds with a SSL certificate. Prior to SNI, the other options would be a wildcard certificate or Subject Alternative Name (SAN) that allows you to specify multiple names with a single certificate. SNI with Virtual Servers It has been possible to use SNI on F5 BIG-IP since TMOS 11.3.0. The following KB13452 outlines how it can be configured. In this scenario (from the KB article) the BIG-IP is terminating the SSL connection. Not all clients support SNI and you will always need to specify a “fallback” profile that will be used if a SNI name is not used or matched. The next example will look at how to use SNI without terminating the SSL connection. SNI Routing Occasionally you may have the need to have a hybrid configuration of terminating SSL connections on the BIG-IP and sending connections without terminating SSL. One method is to create two separate virtual servers, one for SSL connections that the BIG-IP will handle (using clientssl profile) and one that it will not handle SSL (just TCP). This works OK for a small number of backends, but does not scale well if you have many backends (run out of Public IP addresses). Using SNI Routing we can handle everything on a single virtual server / Public IP address. There are 3 methods for performing SNI Routing with BIG-IP iRule with binary scan a. Article by Colin Walker code attribute to Joel Moses b. Code Share by Stanislas Piron iRule with SSL::extensions Local Traffic Policy Option #1 is for folks that prefer complete control of the TLS protocol. It only requires the use of a TCP profile. Options #2 and #3 only require the use of a SSL persistence profile and TCP profile. SNI Routing with Local Traffic Policy We will skip option #1 and #2 in this article and look at using a Local Traffic Policy for SNI Routing. For a review of Local Traffic Policies check out the following DevCentral articles: LTM Policy Jan 2015 Simplifying Local Traffic Policies in BIG-IP 12.1 June 2016 In previous articles about Local Traffic Policiesthe focus was on routing HTTP traffic, but today we will use it to route SSL connections using SNI. In the following example, using a Local Traffic Policy named “sni_routing”, we are setting a condition on the SSL Extension “servername” and sending the traffic to a pool without terminating the SSL connection. The pool member could be another server or another BIG-IP device. The next example will forward the traffic to another virtual server that is configured with a clientssl profile. This uses VIP targeting to send traffic to another virtual server on the same device. In both examples it is important to note that the “condition”/“action” has been changed from occurring on “request” (that maps to a HTTP L7 request) to “ssl client hello”. By performing the action prior to any L7 functions occurring, we can forward the traffic without terminating the SSL connection. The previous example policy, “sni_routing”, can be attached to a Virtual Server that only has a TCP profile and SSL persistence profile. No HTTP or clientssl profile is required! This method can also be used to solve the issue of how to consolidate multiple SSL virtual servers behind a single virtual server that have different APM and/or ASM policies. This is similar to the architecture that is used by the Container Connector for Cloud Foundry; in creating a two-tier load balancing solution on a single device. Routed Correctly? TLS 1.3 has interesting proposals on how to obscure the servername (TLS in TLS?), but for now this is a useful and practical method of handling multiple SSL certs on a single IP. In the future this may still be possible as well with TLS 1.3. For example the use of a HTTP Fronting service could be a tier 1 virtual server (this is just my personal speculation, I have not tried, at the time of publishing this was still a draft proposal). In other news it has been demonstrated that a combination of using SNI and a different host header can be used for “domain fronting”. A method to enforce consistent policy (prevent domain fronting) would be to layer in additional conditions that match requested SNI servername (TLS extension) with requested HOST header (L7 HTTP header). This would help enforce that a tenant is using a certificate that is associated with their application and not “borrowing” the name and certificate that is being used by an adjacent service. We don’t think of a TLS extension as an attribute that can be used to route application traffic, but it is useful and possible on BIG-IP.24KViews0likes16CommentsCipher Suite Practices and Pitfalls
Cipher Suite Practices and Pitfalls It seems like every time you turn around there is a new vulnerability to deal with, and some of them, such as Sweet32, have required altering cipher configurations for mitigation. Still other users may tweak their cipher suite settings to meet requirements for PCI compliance, regulatory issues, local compatibility needs, etc. However, once you start modifying your cipher suite settings you must take great care, as it is very easy to shoot yourself in the foot. Many misconfigurations will silently fail – seeming to achieve the intended result while opening up new, even worse, vulnerabilities. Let's take a look at cipher configuration on the F5 BIG-IP products to try stay on the safe path. What is a Cipher Suite? Before we talk about how they're configured, let's define exactly what we mean by 'cipher suite', how it differs from just a 'cipher', and the components of the suite. Wikipedia had a good summary, so rather than reinvent the wheel: A cipher suite is a named combination of authentication, encryption, message authentication code (MAC) and key exchange algorithms used to negotiate the security settings for a network connection using the Transport Layer Security (TLS) / Secure Sockets Layer (SSL) network protocol. When we talk about configuring ciphers on BIG-IP we're really talking about configuring cipher suites. More specifically the configured list of cipher suites is a menu of options available to be negotiated. Each cipher suite specifies the key exchange algorithm, authentication algorithm, cipher, cipher mode, and MAC that will be used. I recommend reading K15194: Overview of the BIG-IP SSL/TLS cipher suite for more information. But as a quick overview, let's look at a couple of example cipher suites. The cipher suite is in the format: Key Exchange-Authentication-Cipher-Cipher Mode-MAC Note that not all of these components may be explicitly present in the cipher suite, but they are still implicitly part of the suite. Let's consider this cipher suite: ECDHE-RSA-AES256-GCM-SHA384 This breaks down as follows: Key Exchange Algorithm: ECDHE (Elliptic Curve Diffie-Hellman Ephemeral) Authentication Algorithm: RSA Cipher: AES256 (aka AES with a 256-bit key) Cipher Mode: GCM (Galois/Counter Mode) MAC: SHA384 (aka SHA-2 (Secure Hash Algorithm 2) with 384-bit hash) This is arguably the strongest cipher suite we have on BIG-IP at this time. Let's compare that to a simpler cipher suite: AES128-SHA Key Exchange Algorithm: RSA (Implied) – When it isn't specified, presume RSA. Authentication Algorithm: RSA (Implied) – When it isn't specified, presume RSA. Cipher: AES128 (aka AES with a 128-bit key) Cipher Mode: CBC (Cipher Block Chaining) (Implied) – When it isn't specified, presume CBC. MAC: SHA1 (Secure Hash Algorithm 1; SHA-1 always produces a 160-bit hash.) This example illustrates that the cipher suite may not always explicitly specify every parameter, but they're still there. There are 'default' values that are fairly safe to presume when not otherwise specified. If an algorithm isn't specified, it is RSA. That's a safe bet. And if a cipher mode isn't specified it is CBC. Always CBC. Note that all ciphers currently supported on BIG-IP are CBC mode except for AES-GCM and RC4. ALL. I stress this as it has been a recurring source of confusion amongst customers. It isn't only the cipher suites which explicitly state 'CBC' in their name. Let's examine each of these components. This article is primarily about cipher suite configuration and ciphers, and not the SSL/TLS protocol, so I won't dive too deeply here, but I think it helps to have a basic understanding. Forgive me if I simplify a bit. Key Exchange Algorithms As a quick review of the difference between asymmetric key (aka public key) cryptography and symmetric key cryptography: With the asymmetric key you have two keys – K public and K private –which have a mathematical relationship. Since you can openly share the public key there is no need to pre-share keys with anyone. The downside is that these algorithms are computationally expensive. Key lengths for a common algorithm such as RSA are at least 1024-bit, and 2048-bit is really the minimally acceptable these days. Symmetric key has only K private . Both ends use the same key, which poses the problem of key distribution. The advantage is higher computational performance and common key sizes are 128-bit or 256-bit. SSL/TLS, of course, uses both public and private key systems – the Key Exchange Algorithm is the public key system used to exchange the symmetric key. Examples you'll see in cipher suites include ECDHE, DHE, RSA, ECDH, and ADH. Authentication Algorithms The Authentication Algorithm is sometimes grouped in with the Key Exchange Algorithm for configuration purposes; 'ECDHE_RSA' for example. But we'll consider it as a separate component. This is the algorithm used in the SSL/TLS handshake for the server to sign (using the server's private key) elements sent to the client in the negotiation. The client can authenticate them using the server's public key. Examples include: RSA, ECDSA, DSS (aka DSA), and Anonymous. Anonymous means no authentication; this is generally bad. The most common way users run into this is by accidentally enabling an 'ADH' cipher suite. More on this later when we talk about pitfalls. Note that when RSA is used for the key exchange, authentication is inherent to the scheme so there really isn't a separate authentication step. However, most tools will list it out for completeness. Cipher To borrow once again from Wikipedia: In cryptography, a cipher (or cypher) is an algorithm for performing encryption or decryption—a series of well-defined steps that can be followed as a procedure. An alternative, less common term is encipherment. To encipher or encode is to convert information into cipher or code. In common parlance, 'cipher' is synonymous with 'code', as they are both a set of steps that encrypt a message; however, the concepts are distinct in cryptography, especially classical cryptography. This is what most of us mean when we refer to 'configuring ciphers'. We're primarily interested in controlling the cipher used to protect our information through encryption. There are many, many examples of ciphers which you may be familiar with: DES (Data Encryption Standard), 3DES (Triple DES), AES (Advanced Encryption Standard), RC4 (Rivest Cipher 4), Camellia, RC6, RC2, Blowfish, Twofish, IDEA, SEED, GOST, Rijndael, Serpent, MARS, etc. For a little cipher humor, I recommend RFC2410: The NULL Encryption Algorithm and Its Use With IPsec. Roughly speaking, ciphers come in two types – block ciphers and stream ciphers. Block Ciphers Block ciphers operate on fixed-length chunks of data, or blocks. For example, DES operates on 64-bit blocks while AES operates on 128-bit blocks. Most of the ciphers you'll encounter are block ciphers. Examples: DES, 3DES, AES, Blowfish, Twofish, etc. Stream Ciphers Stream ciphers mathematically operate on each bit in the data flow individually. The most commonly encountered stream cipher is RC4, and that's deprecated. So we're generally focused on block ciphers, not that it really changes anything for the purposes of this article. All of the secrecy in encryption comes from the key that is used, not the cipher itself. Obtain the key and you can unlock the ciphertext. The cipher itself – the algorithm, source code, etc. – not only can be, but should be, openly available. History is full of examples of private cryptosystems failing due to weaknesses missed by their creators, while the most trusted ciphers were created via open processes (AES for example). Keys are of varying lengths and, generally speaking, the longer the key the more secure the encryption. DES only had 56-bits of key data, and thus is considered insecure. We label 3DES as 168-bit, but it is really only equivalent to 112-bit strength. (More on this later.) Newer ciphers, such as AES, often offer options – 128-bits, 192-bits, or 256-bits of key. Remember, a 256-bit key is far more than twice as strong as a 128-bit key. It is 2 128 vs. 2 256 - 3.4028237e+38 vs. 1.1579209e+77 Cipher Mode Cipher mode is the mode of operation used by the cipher when encrypting plaintext into ciphertext, or decrypting ciphertext into plaintext. The most common mode is CBC – Cipher Block Chaining. In cipher block chaining the ciphertext from block n feeds into the process for block n+1 – the blocks are chained together. To steal borrow an image from Wikipedia: As I mentioned previously, all ciphers on BIG-IP are CBC mode except for RC4 (the lone stream cipher, disabled by default starting in 11.6.0) and AES-GCM. AES-GCM was first introduced in 11.5.0, and it is only available for TLSv1.2 connections. GCM stands for Galois/Counter Mode, a more advanced mode of operation than CBC. In GCM the blocks are not chained together. GCM runs in an Authenticated Encryption with Associated Data (AEAD) mode which eliminates the separate per-message hashing step, therefore it can achieve higher performance than CBC mode on a given HW platform. It is also immune to classes of attack that have harried CBC, such as the numerous padding attacks (BEAST, Lucky 13, etc.) Via Wikipedia: The main drawback to AES-GCM is that it was only added in TLSv1.2, so any older clients which don't support TLSv1.2 cannot use it. There are other cipher suites officially supported in TLS which have other modes, but F5 does not currently support those ciphers so we won't get too deep into that. Other ciphers include AES-CCM (CTR mode with a CBC MAC; CTR is Counter Mode), CAMELLIA-GCM (CAMELLIA as introduced in 12.0.0 is CBC), and GOST CNT (aka CTR). We may see these in the future. MAC aka Hash Function What did we ever do before Wikipedia? A hash function is any function that can be used to map data of arbitrary size to data of fixed size. The values returned by a hash function are called hash values, hash codes, digests, or simply hashes. One use is a data structure called a hash table, widely used in computer software for rapid data lookup. Hash functions accelerate table or database lookup by detecting duplicated records in a large file. An example is finding similar stretches in DNA sequences. They are also useful in cryptography. A cryptographic hash function allows one to easily verify that some input data maps to a given hash value, but if the input data is unknown, it is deliberately difficult to reconstruct it (or equivalent alternatives) by knowing the stored hash value. This is used for assuring integrity of transmitted data, and is the building block for HMACs, which provide message authentication. In short, the MAC provides message integrity. Hash functions include MD5, SHA-1 (aka SHA), SHA-2 (aka SHA128, SHA256, & SHA384), and AEAD (Authenticated Encryption with Associated Data). MD5 has long since been rendered completely insecure and is deprecated. SHA-1 is now being 'shamed', if not blocked, by browsers as it is falling victim to advances in cryptographic attacks. While some may need to continue to support SHA-1 cipher suites for legacy clients, it is encouraged to migrate to SHA-2 as soon as possible – especially for digital certificates. Configuring Cipher Suites on BIG-IP Now that we've covered what cipher suites are, let's look at where we use them. There are two distinct and separate areas where cipher suites are used – the host, or control plane, and TMM, or the data plane. On the host side SSL/TLS is handled by OpenSSL and the configuration follows the standard OpenSSL configuration options. Control Plane The primary use of SSL/TLS on the control plane is for httpd. To see the currently configured cipher suite, use ' tmsh list sys http ssl-ciphersuite '. The defaults may vary depending on the version of TMOS. For example, these were the defaults in 12.0.0: tmsh list sys http ssl-ciphersuite sys httpd { ssl-ciphersuite DEFAULT:!aNULL:!eNULL:!LOW:!RC4:!MD5:!EXP } As of 12.1.2 these have been updated to a more explicit list: tmsh list sys http ssl-ciphersuite sys httpd { ssl-ciphersuite ECDHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-GCM-SHA384:ECDHE-RSA-AES128-SHA:ECDHE-RSA-AES256-SHA:ECDHE-RSA-AES128-SHA256:ECDHE-RSA-AES256-SHA384:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-ECDSA-AES128-SHA:ECDHE-ECDSA-AES256-SHA:ECDHE-ECDSA-AES128-SHA256:ECDHE-ECDSA-AES256-SHA384:AES128-GCM-SHA256:AES256-GCM-SHA384:AES128-SHA:AES256-SHA:AES128-SHA256:AES256-SHA256:ECDHE-RSA-DES-CBC3-SHA:ECDHE-ECDSA-DES-CBC3-SHA:DES-CBC3-SHA } You can change this configuration via ' tmsh modify sys http ssl-ciphersuite <value> '. One important thing to note is that the default is not just 'DEFAULT' as it is on the data plane. This is one thing that users have been caught by; thinking that setting the keyword to 'DEFAULT' will reset the configuration. As OpenSSL provides SSL/TLS support for the control plane, if you want to see which ciphers will actually be supported you can use ' openssl ciphers -v <cipherstring> '. For example: openssl ciphers -v 'ECDHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-GCM-SHA384:ECDHE-RSA-AES128-SHA:ECDHE-RSA-AES256-SHA:ECDHE-RSA-AES128-SHA256:ECDHE-RSA-AES256-SHA384:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-ECDSA-AES128-SHA:ECDHE-ECDSA-AES256-SHA:ECDHE-ECDSA-AES128-SHA256:ECDHE-ECDSA-AES256-SHA384:AES128-GCM-SHA256:AES256-GCM-SHA384:AES128-SHA:AES256-SHA:AES128-SHA256:AES256-SHA256:ECDHE-RSA-DES-CBC3-SHA:ECDHE-ECDSA-DES-CBC3-SHA:DES-CBC3-SHA' ECDHE-RSA-AES128-GCM-SHA256 TLSv1.2 Kx=ECDH Au=RSA Enc=AESGCM(128) Mac=AEAD ECDHE-RSA-AES256-GCM-SHA384 TLSv1.2 Kx=ECDH Au=RSA Enc=AESGCM(256) Mac=AEAD ECDHE-RSA-AES128-SHA SSLv3 Kx=ECDH Au=RSA Enc=AES(128) Mac=SHA1 ECDHE-RSA-AES256-SHA SSLv3 Kx=ECDH Au=RSA Enc=AES(256) Mac=SHA1 ECDHE-RSA-AES128-SHA256 TLSv1.2 Kx=ECDH Au=RSA Enc=AES(128) Mac=SHA256 ECDHE-RSA-AES256-SHA384 TLSv1.2 Kx=ECDH Au=RSA Enc=AES(256) Mac=SHA384 ECDHE-ECDSA-AES128-GCM-SHA256 TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESGCM(128) Mac=AEAD ECDHE-ECDSA-AES256-GCM-SHA384 TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESGCM(256) Mac=AEAD ECDHE-ECDSA-AES128-SHA SSLv3 Kx=ECDH Au=ECDSA Enc=AES(128) Mac=SHA1 ECDHE-ECDSA-AES256-SHA SSLv3 Kx=ECDH Au=ECDSA Enc=AES(256) Mac=SHA1 ECDHE-ECDSA-AES128-SHA256 TLSv1.2 Kx=ECDH Au=ECDSA Enc=AES(128) Mac=SHA256 ECDHE-ECDSA-AES256-SHA384 TLSv1.2 Kx=ECDH Au=ECDSA Enc=AES(256) Mac=SHA384 AES128-GCM-SHA256 TLSv1.2 Kx=RSA Au=RSA Enc=AESGCM(128) Mac=AEAD AES256-GCM-SHA384 TLSv1.2 Kx=RSA Au=RSA Enc=AESGCM(256) Mac=AEAD AES128-SHA SSLv3 Kx=RSA Au=RSA Enc=AES(128) Mac=SHA1 AES256-SHA SSLv3 Kx=RSA Au=RSA Enc=AES(256) Mac=SHA1 AES128-SHA256 TLSv1.2 Kx=RSA Au=RSA Enc=AES(128) Mac=SHA256 AES256-SHA256 TLSv1.2 Kx=RSA Au=RSA Enc=AES(256) Mac=SHA256 ECDHE-RSA-DES-CBC3-SHA SSLv3 Kx=ECDH Au=RSA Enc=3DES(168) Mac=SHA1 ECDHE-ECDSA-DES-CBC3-SHA SSLv3 Kx=ECDH Au=ECDSA Enc=3DES(168) Mac=SHA1 DES-CBC3-SHA SSLv3 Kx=RSA Au=RSA Enc=3DES(168) Mac=SHA1 Now let's see what happens if you use 'DEFAULT': openssl ciphers -v 'DEFAULT' ECDHE-RSA-AES256-GCM-SHA384 TLSv1.2 Kx=ECDH Au=RSA Enc=AESGCM(256) Mac=AEAD ECDHE-ECDSA-AES256-GCM-SHA384 TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESGCM(256) Mac=AEAD ECDHE-RSA-AES256-SHA384 TLSv1.2 Kx=ECDH Au=RSA Enc=AES(256) Mac=SHA384 ECDHE-ECDSA-AES256-SHA384 TLSv1.2 Kx=ECDH Au=ECDSA Enc=AES(256) Mac=SHA384 ECDHE-RSA-AES256-SHA SSLv3 Kx=ECDH Au=RSA Enc=AES(256) Mac=SHA1 ECDHE-ECDSA-AES256-SHA SSLv3 Kx=ECDH Au=ECDSA Enc=AES(256) Mac=SHA1 DHE-DSS-AES256-GCM-SHA384 TLSv1.2 Kx=DH Au=DSS Enc=AESGCM(256) Mac=AEAD DHE-RSA-AES256-GCM-SHA384 TLSv1.2 Kx=DH Au=RSA Enc=AESGCM(256) Mac=AEAD DHE-RSA-AES256-SHA256 TLSv1.2 Kx=DH Au=RSA Enc=AES(256) Mac=SHA256 DHE-DSS-AES256-SHA256 TLSv1.2 Kx=DH Au=DSS Enc=AES(256) Mac=SHA256 DHE-RSA-AES256-SHA SSLv3 Kx=DH Au=RSA Enc=AES(256) Mac=SHA1 DHE-DSS-AES256-SHA SSLv3 Kx=DH Au=DSS Enc=AES(256) Mac=SHA1 DHE-RSA-CAMELLIA256-SHA SSLv3 Kx=DH Au=RSA Enc=Camellia(256) Mac=SHA1 DHE-DSS-CAMELLIA256-SHA SSLv3 Kx=DH Au=DSS Enc=Camellia(256) Mac=SHA1 ECDH-RSA-AES256-GCM-SHA384 TLSv1.2 Kx=ECDH/RSA Au=ECDH Enc=AESGCM(256) Mac=AEAD ECDH-ECDSA-AES256-GCM-SHA384 TLSv1.2 Kx=ECDH/ECDSA Au=ECDH Enc=AESGCM(256) Mac=AEAD ECDH-RSA-AES256-SHA384 TLSv1.2 Kx=ECDH/RSA Au=ECDH Enc=AES(256) Mac=SHA384 ECDH-ECDSA-AES256-SHA384 TLSv1.2 Kx=ECDH/ECDSA Au=ECDH Enc=AES(256) Mac=SHA384 ECDH-RSA-AES256-SHA SSLv3 Kx=ECDH/RSA Au=ECDH Enc=AES(256) Mac=SHA1 ECDH-ECDSA-AES256-SHA SSLv3 Kx=ECDH/ECDSA Au=ECDH Enc=AES(256) Mac=SHA1 AES256-GCM-SHA384 TLSv1.2 Kx=RSA Au=RSA Enc=AESGCM(256) Mac=AEAD AES256-SHA256 TLSv1.2 Kx=RSA Au=RSA Enc=AES(256) Mac=SHA256 AES256-SHA SSLv3 Kx=RSA Au=RSA Enc=AES(256) Mac=SHA1 CAMELLIA256-SHA SSLv3 Kx=RSA Au=RSA Enc=Camellia(256) Mac=SHA1 PSK-AES256-CBC-SHA SSLv3 Kx=PSK Au=PSK Enc=AES(256) Mac=SHA1 ECDHE-RSA-AES128-GCM-SHA256 TLSv1.2 Kx=ECDH Au=RSA Enc=AESGCM(128) Mac=AEAD ECDHE-ECDSA-AES128-GCM-SHA256 TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESGCM(128) Mac=AEAD ECDHE-RSA-AES128-SHA256 TLSv1.2 Kx=ECDH Au=RSA Enc=AES(128) Mac=SHA256 ECDHE-ECDSA-AES128-SHA256 TLSv1.2 Kx=ECDH Au=ECDSA Enc=AES(128) Mac=SHA256 ECDHE-RSA-AES128-SHA SSLv3 Kx=ECDH Au=RSA Enc=AES(128) Mac=SHA1 ECDHE-ECDSA-AES128-SHA SSLv3 Kx=ECDH Au=ECDSA Enc=AES(128) Mac=SHA1 DHE-DSS-AES128-GCM-SHA256 TLSv1.2 Kx=DH Au=DSS Enc=AESGCM(128) Mac=AEAD DHE-RSA-AES128-GCM-SHA256 TLSv1.2 Kx=DH Au=RSA Enc=AESGCM(128) Mac=AEAD DHE-RSA-AES128-SHA256 TLSv1.2 Kx=DH Au=RSA Enc=AES(128) Mac=SHA256 DHE-DSS-AES128-SHA256 TLSv1.2 Kx=DH Au=DSS Enc=AES(128) Mac=SHA256 DHE-RSA-AES128-SHA SSLv3 Kx=DH Au=RSA Enc=AES(128) Mac=SHA1 DHE-DSS-AES128-SHA SSLv3 Kx=DH Au=DSS Enc=AES(128) Mac=SHA1 DHE-RSA-SEED-SHA SSLv3 Kx=DH Au=RSA Enc=SEED(128) Mac=SHA1 DHE-DSS-SEED-SHA SSLv3 Kx=DH Au=DSS Enc=SEED(128) Mac=SHA1 DHE-RSA-CAMELLIA128-SHA SSLv3 Kx=DH Au=RSA Enc=Camellia(128) Mac=SHA1 DHE-DSS-CAMELLIA128-SHA SSLv3 Kx=DH Au=DSS Enc=Camellia(128) Mac=SHA1 ECDH-RSA-AES128-GCM-SHA256 TLSv1.2 Kx=ECDH/RSA Au=ECDH Enc=AESGCM(128) Mac=AEAD ECDH-ECDSA-AES128-GCM-SHA256 TLSv1.2 Kx=ECDH/ECDSA Au=ECDH Enc=AESGCM(128) Mac=AEAD ECDH-RSA-AES128-SHA256 TLSv1.2 Kx=ECDH/RSA Au=ECDH Enc=AES(128) Mac=SHA256 ECDH-ECDSA-AES128-SHA256 TLSv1.2 Kx=ECDH/ECDSA Au=ECDH Enc=AES(128) Mac=SHA256 ECDH-RSA-AES128-SHA SSLv3 Kx=ECDH/RSA Au=ECDH Enc=AES(128) Mac=SHA1 ECDH-ECDSA-AES128-SHA SSLv3 Kx=ECDH/ECDSA Au=ECDH Enc=AES(128) Mac=SHA1 AES128-GCM-SHA256 TLSv1.2 Kx=RSA Au=RSA Enc=AESGCM(128) Mac=AEAD AES128-SHA256 TLSv1.2 Kx=RSA Au=RSA Enc=AES(128) Mac=SHA256 AES128-SHA SSLv3 Kx=RSA Au=RSA Enc=AES(128) Mac=SHA1 SEED-SHA SSLv3 Kx=RSA Au=RSA Enc=SEED(128) Mac=SHA1 CAMELLIA128-SHA SSLv3 Kx=RSA Au=RSA Enc=Camellia(128) Mac=SHA1 PSK-AES128-CBC-SHA SSLv3 Kx=PSK Au=PSK Enc=AES(128) Mac=SHA1 ECDHE-RSA-RC4-SHA SSLv3 Kx=ECDH Au=RSA Enc=RC4(128) Mac=SHA1 ECDHE-ECDSA-RC4-SHA SSLv3 Kx=ECDH Au=ECDSA Enc=RC4(128) Mac=SHA1 ECDH-RSA-RC4-SHA SSLv3 Kx=ECDH/RSA Au=ECDH Enc=RC4(128) Mac=SHA1 ECDH-ECDSA-RC4-SHA SSLv3 Kx=ECDH/ECDSA Au=ECDH Enc=RC4(128) Mac=SHA1 RC4-SHA SSLv3 Kx=RSA Au=RSA Enc=RC4(128) Mac=SHA1 RC4-MD5 SSLv3 Kx=RSA Au=RSA Enc=RC4(128) Mac=MD5 PSK-RC4-SHA SSLv3 Kx=PSK Au=PSK Enc=RC4(128) Mac=SHA1 ECDHE-RSA-DES-CBC3-SHA SSLv3 Kx=ECDH Au=RSA Enc=3DES(168) Mac=SHA1 ECDHE-ECDSA-DES-CBC3-SHA SSLv3 Kx=ECDH Au=ECDSA Enc=3DES(168) Mac=SHA1 EDH-RSA-DES-CBC3-SHA SSLv3 Kx=DH Au=RSA Enc=3DES(168) Mac=SHA1 EDH-DSS-DES-CBC3-SHA SSLv3 Kx=DH Au=DSS Enc=3DES(168) Mac=SHA1 ECDH-RSA-DES-CBC3-SHA SSLv3 Kx=ECDH/RSA Au=ECDH Enc=3DES(168) Mac=SHA1 ECDH-ECDSA-DES-CBC3-SHA SSLv3 Kx=ECDH/ECDSA Au=ECDH Enc=3DES(168) Mac=SHA1 DES-CBC3-SHA SSLv3 Kx=RSA Au=RSA Enc=3DES(168) Mac=SHA1 PSK-3DES-EDE-CBC-SHA SSLv3 Kx=PSK Au=PSK Enc=3DES(168) Mac=SHA1 EDH-RSA-DES-CBC-SHA SSLv3 Kx=DH Au=RSA Enc=DES(56) Mac=SHA1 EDH-DSS-DES-CBC-SHA SSLv3 Kx=DH Au=DSS Enc=DES(56) Mac=SHA1 DES-CBC-SHA SSLv3 Kx=RSA Au=RSA Enc=DES(56) Mac=SHA1 EXP-EDH-RSA-DES-CBC-SHA SSLv3 Kx=DH(512) Au=RSA Enc=DES(40) Mac=SHA1 export EXP-EDH-DSS-DES-CBC-SHA SSLv3 Kx=DH(512) Au=DSS Enc=DES(40) Mac=SHA1 export EXP-DES-CBC-SHA SSLv3 Kx=RSA(512) Au=RSA Enc=DES(40) Mac=SHA1 export EXP-RC2-CBC-MD5 SSLv3 Kx=RSA(512) Au=RSA Enc=RC2(40) Mac=MD5 export EXP-RC4-MD5 SSLv3 Kx=RSA(512) Au=RSA Enc=RC4(40) Mac=MD5 export As you can see that enables far, far more ciphers, including a number of unsafe ciphers – export, MD5, DES, etc. This is a good example of why you always want to confirm your cipher settings and check exactly what is being enabled before placing new settings into production. Many security disasters could be avoided if everyone doublechecked their settings first. Let’s take a closer look at how OpenSSL represents one of the cipher suites: ECDHE-RSA-AES256-GCM-SHA384 TLSv1.2 Kx=ECDH Au=RSA Enc=AESGCM(256) Mac=AEAD The columns are: Cipher Suite: ECDHE-RSA-AES256-GCM-SHA384 Protocol: TLSv1.2 Key Exchange Algorithm (Kx): ECDH Authentication Algorithm (Au): RSA Cipher/Encryption Algorithm (Enc): AESGCM(256) MAC (Mac): AEAD Since the control plane uses OpenSSL you can use the standard OpenSSL documentation, so I won't spend a lot of time on that. Data Plane In TMM the cipher suites are configured in the Ciphers field of the Client SSL or Server SSL profiles. See K14783: Overview of the Client SSL profile (11.x - 12.x) & K14806: Overview of the Server SSL profile (11.x - 12.x), respectively for more details. It is important to keep in mind that these are two different worlds with their own requirements and quirks. As most of the configuration activity, and security concerns, occur on the public facing side of the system, we'll focus on the Client SSL Profile. Most of the things we'll cover here will also apply to the Server SSL profile. In the GUI it appears as an editable field: Presuming the profile was created with the name 'Test': tmsh list ltm profile client-ssl Test ltm profile client-ssl Test { app-service none cert default.crt cert-key-chain { default { cert default.crt key default.key } } chain none ciphers DEFAULT defaults-from clientssl inherit-certkeychain true key default.key passphrase none } Modifying the cipher configuration from the command line is simple. tmsh list ltm profile client-ssl Test ciphers ltm profile client-ssl Test { ciphers DEFAULT } tmsh modify ltm profile client-ssl Test ciphers 'DEFAULT:!3DES' tmsh list ltm profile client-ssl Test ciphers ltm profile client-ssl Test { ciphers DEFAULT:!3DES } Just remember the ' tmsh save sys config ' when you're happy with the configuration. Note here the default is just 'DEFAULT'. What that expands to will vary depending on the version of TMOS. K13156: SSL ciphers used in the default SSL profiles (11.x - 12.x) defines the default values for each version of TMOS. Or you can check it locally from the command line: tmm --clientciphers 'DEFAULT' On 12.1.2 that would be: tmm --clientciphers 'DEFAULT' ID SUITE BITS PROT METHOD CIPHER MAC KEYX 0: 159 DHE-RSA-AES256-GCM-SHA384 256 TLS1.2 Native AES-GCM SHA384 EDH/RSA 1: 158 DHE-RSA-AES128-GCM-SHA256 128 TLS1.2 Native AES-GCM SHA256 EDH/RSA 2: 107 DHE-RSA-AES256-SHA256 256 TLS1.2 Native AES SHA256 EDH/RSA 3: 57 DHE-RSA-AES256-SHA 256 TLS1 Native AES SHA EDH/RSA 4: 57 DHE-RSA-AES256-SHA 256 TLS1.1 Native AES SHA EDH/RSA 5: 57 DHE-RSA-AES256-SHA 256 TLS1.2 Native AES SHA EDH/RSA 6: 57 DHE-RSA-AES256-SHA 256 DTLS1 Native AES SHA EDH/RSA 7: 103 DHE-RSA-AES128-SHA256 128 TLS1.2 Native AES SHA256 EDH/RSA 8: 51 DHE-RSA-AES128-SHA 128 TLS1 Native AES SHA EDH/RSA 9: 51 DHE-RSA-AES128-SHA 128 TLS1.1 Native AES SHA EDH/RSA 10: 51 DHE-RSA-AES128-SHA 128 TLS1.2 Native AES SHA EDH/RSA 11: 51 DHE-RSA-AES128-SHA 128 DTLS1 Native AES SHA EDH/RSA 12: 22 DHE-RSA-DES-CBC3-SHA 168 TLS1 Native DES SHA EDH/RSA 13: 22 DHE-RSA-DES-CBC3-SHA 168 TLS1.1 Native DES SHA EDH/RSA 14: 22 DHE-RSA-DES-CBC3-SHA 168 TLS1.2 Native DES SHA EDH/RSA 15: 22 DHE-RSA-DES-CBC3-SHA 168 DTLS1 Native DES SHA EDH/RSA 16: 157 AES256-GCM-SHA384 256 TLS1.2 Native AES-GCM SHA384 RSA 17: 156 AES128-GCM-SHA256 128 TLS1.2 Native AES-GCM SHA256 RSA 18: 61 AES256-SHA256 256 TLS1.2 Native AES SHA256 RSA 19: 53 AES256-SHA 256 TLS1 Native AES SHA RSA 20: 53 AES256-SHA 256 TLS1.1 Native AES SHA RSA 21: 53 AES256-SHA 256 TLS1.2 Native AES SHA RSA 22: 53 AES256-SHA 256 DTLS1 Native AES SHA RSA 23: 60 AES128-SHA256 128 TLS1.2 Native AES SHA256 RSA 24: 47 AES128-SHA 128 TLS1 Native AES SHA RSA 25: 47 AES128-SHA 128 TLS1.1 Native AES SHA RSA 26: 47 AES128-SHA 128 TLS1.2 Native AES SHA RSA 27: 47 AES128-SHA 128 DTLS1 Native AES SHA RSA 28: 10 DES-CBC3-SHA 168 TLS1 Native DES SHA RSA 29: 10 DES-CBC3-SHA 168 TLS1.1 Native DES SHA RSA 30: 10 DES-CBC3-SHA 168 TLS1.2 Native DES SHA RSA 31: 10 DES-CBC3-SHA 168 DTLS1 Native DES SHA RSA 32: 49200 ECDHE-RSA-AES256-GCM-SHA384 256 TLS1.2 Native AES-GCM SHA384 ECDHE_RSA 33: 49199 ECDHE-RSA-AES128-GCM-SHA256 128 TLS1.2 Native AES-GCM SHA256 ECDHE_RSA 34: 49192 ECDHE-RSA-AES256-SHA384 256 TLS1.2 Native AES SHA384 ECDHE_RSA 35: 49172 ECDHE-RSA-AES256-CBC-SHA 256 TLS1 Native AES SHA ECDHE_RSA 36: 49172 ECDHE-RSA-AES256-CBC-SHA 256 TLS1.1 Native AES SHA ECDHE_RSA 37: 49172 ECDHE-RSA-AES256-CBC-SHA 256 TLS1.2 Native AES SHA ECDHE_RSA 38: 49191 ECDHE-RSA-AES128-SHA256 128 TLS1.2 Native AES SHA256 ECDHE_RSA 39: 49171 ECDHE-RSA-AES128-CBC-SHA 128 TLS1 Native AES SHA ECDHE_RSA 40: 49171 ECDHE-RSA-AES128-CBC-SHA 128 TLS1.1 Native AES SHA ECDHE_RSA 41: 49171 ECDHE-RSA-AES128-CBC-SHA 128 TLS1.2 Native AES SHA ECDHE_RSA 42: 49170 ECDHE-RSA-DES-CBC3-SHA 168 TLS1 Native DES SHA ECDHE_RSA 43: 49170 ECDHE-RSA-DES-CBC3-SHA 168 TLS1.1 Native DES SHA ECDHE_RSA 44: 49170 ECDHE-RSA-DES-CBC3-SHA 168 TLS1.2 Native DES SHA ECDHE_RSA Some differences when compared to OpenSSL are readily apparent. For starters, TMM kindly includes a column label header, and actually aligns the columns. The first column is simply a 0-ordinal numeric index, the rest are as follows: ID: The official SSL/TLS ID assigned to that cipher suite. SUITE: The cipher suite. BITS: The size of the key in bits. PROT: The protocol supported. METHOD: NATIVE (in TMM) vs. COMPAT (using OpenSSL code). CIPHER: The cipher. MAC: The hash function. KEYX: The Key Exchange and Authentication Algorithms Note that the MAC is a little misleading for AES-GCM cipher suites. There is no separate MAC as they're AEAD. But the hashing algorithm is used in the Pseudo-Random Function (PRF) and a few other handshake related places. Selecting the Cipher Suites Now we know how to look at the current configuration, modify it, and list the actual ciphers that will be enabled by the listed suites. But what do we put into the configuration? Most users won't have to touch this. The default values are carefully selected by F5 to meet the needs of the majority of our customers. That's the good news. The bad news is that some customers will need to get in there and change the configuration – be it for regulatory compliance, internal policies, legacy client support, etc. Once you begin modifying them, the configuration is truly custom for each customer. Every customer who modifies the configuration, and uses a custom cipher configuration, needs to determine what the proper list is for their needs. Let's say we have determined that we need to support only AES & AES-GCM, 128-bit or 256-bit, and only ECDHE key exchange. Any MAC or Authentication is fine. OK, let's proceed from there. On 12.1.2 there are six cipher suites that fit those criteria. We could list them all explicitly: tmm --clientciphers 'ECDHE-RSA-AES256-GCM-SHA384:ECDHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-SHA384:ECDHE-RSA-AES256-CBC-SHA:ECDHE-RSA-AES128-SHA256:ECDHE-RSA-AES128-CBC-SHA' That will work, but it gets unwieldy fast. Not only that, but in versions up to 11.5.0 the ciphers configuration string was truncated at 256bytes. Starting in 11.5.0 that was increased to 768bytes, but that can still truncate long configurations. We'll revisit this when we get to the pitfalls section. Fortunately, there is an alternative – keywords! This will result in the same list of cipher suites: tmm --clientciphers 'ECDHE+AES-GCM:ECDHE+AES' That specifies the ECDHE key exchange with AES-GCM ciphers, and ECDHE with AES ciphers. Let's take a closer look to help understand what is happening here. Keywords Keywords are extremely important when working with cipher suite configuration, so we'll spend a little time on those. Most of these apply to both the control plane (OpenSSL) and the data plane (TMM), unless otherwise noted, but we're focused on the data plane as that's F5 specific. Keywords organize into different categories. F5 specific: NATIVE: cipher suites implemented natively in TMM COMPAT: cipher suites using OpenSSL code; removed as of 12.0.0 @SPEED: Re-orders the list to put 'faster' (based on TMOS implementation performance) ciphers first. Sorting: @SPEED: Re-orders the list to put 'faster' (based on TMOS implementation performance) ciphers first. (F5 Specific) @STRENGTH: Re-orders the list to put 'stronger' (larger keys) ciphers first. Protocol: TLSv1_2: cipher suites available under TLSv1.2 TLSv1_1: cipher suites available under TLSv1.1 TLSv1: cipher suites available under TLSv1.0 SSLv3: cipher suites available under SSLv3 Note the 'Protocol' keywords in the cipher configuration control the ciphers associated with that protocol, and not the protocol itself! More on this in pitfalls. Key Exchange Algorithms (sometimes with Authentication specified): ECDHE or ECDHA_RSA: Elliptic Curve Diffie-Hellman Ephemeral (with RSA) ECDHE_ECDSA: ECDHE with Elliptic Curve Digital Signature Algorithm DHE or EDH: Diffie-Hellman Ephemeral (aka Ephemeral Diffie-Hellman) (with RSA) DHE_DSS: DHE with Digital Signature Standard (aka DSA – Digital Signature Algorithm) ECDH_RSA: Elliptic Curve Diffie-Hellman with RSA ECDH_ECDSA: ECDH with ECDSA RSA: RSA, obviously ADH: Anonymous Diffie-Hellman. Note the Authentication Algorithms don't work as standalone keywords in TMM. You can't use 'ECDSA' or 'DSS' for example. And you might think ECDHE or DHE includes all such cipher suites – note that they don't if you read carefully. General cipher groupings: DEFAULT: The default cipher suite for that version; see K13156 ALL: All NATIVE cipher suites; does not include COMPAT in current versions HIGH: 'High' security cipher suites; >128-bit MEDIUM: 'Medium' security cipher suites; effectively 128-bit suites LOW: 'Low' security cipher suites; <128-bit excluding export grade ciphers EXP or EXPORT: Export grade ciphers; 40-bit or 56-bit EXPORT56: 56-bit export ciphers EXPORT40: 40-bit export ciphers Note that DEFAULT does change periodically as F5 updates the configuration to follow the latest best practices. K13156: SSL ciphers used in the default SSL profiles (11.x - 12.x) documents these changes. Cipher families: AES-GCM: AES in GCM mode; 128-bit or 256-bit AES: AES in CBC mode; 128-bit or 256-bit CAMELLIA: Camellia in CBC mode; 128-bit or 256-bit 3DES: Triple DES in CBC mode; 168-bit (well, 112-bit really) DES: Single DES in CBC mode, includes EXPORTciphers;40-bit & 56-bit. RC4: RC4 stream cipher NULL: NULL cipher; just what it sounds like, it does nothing – no encryption MAC aka Hash Function: SHA384: SHA-2 384-bit hash SHA256: SHA-2 256-bit hash SHA1 or SHA: SHA-1 160-bit hash MD5: MD5 128-bit hash Other: On older TMOS versions when using the COMPAT keyword it also enables two additional keywords: SSLv2: Ciphers supported on the SSLv2 protocol RC2: RC2 ciphers. So, let's go back to our example: tmm --clientciphers 'ECDHE+AES-GCM:ECDHE+AES' Note that you can combine keywords using '+' (plus sign). And multiple entries in the ciphers configuration line are separated with ':' (colon). You may also need to wrap the string in single quotes on the command line – I find it is a good habit to just always do so. We can also exclude suites or keywords. There are two ways to do that: '!' (exclamation point) is a hard exclusion. Anything excluded this way cannot be implicitly or explicitly re-enabled. It is disabled, period. '-' (minus sign or dash) is a soft exclusion. Anything excluded this way can be explicitly re-enabled later in the configuration string. (Note: The dash is also usedinthe names of many cipher suites, such as ECDHE-RSA-AES256-GCM-SHA384 or AES128-SHA. Do not confuse the dashes that are part of the cipher suite names with a soft exclusion, which alwaysprecedes, or prefixes,the value being excluded. 'AES128-SHA': AES128-SHA cipher suite. '-SHA': SHA is soft excluded. '-AES128-SHA': the AES128-SHA cipher suite is soft excluded. Position matters.) Let's look at the difference in hard and soft exclusions. We'll start with our base example: tmm --clientciphers 'ECDHE+AES-GCM:DHE+AES-GCM' ID SUITE BITS PROT METHOD CIPHER MAC KEYX 0: 49200 ECDHE-RSA-AES256-GCM-SHA384 256 TLS1.2 Native AES-GCM SHA384 ECDHE_RSA 1: 49199 ECDHE-RSA-AES128-GCM-SHA256 128 TLS1.2 Native AES-GCM SHA256 ECDHE_RSA 2: 159 DHE-RSA-AES256-GCM-SHA384 256 TLS1.2 Native AES-GCM SHA384 EDH/RSA 3: 158 DHE-RSA-AES128-GCM-SHA256 128 TLS1.2 Native AES-GCM SHA256 EDH/RSA Now let's look at a hard exclusion: tmm --clientciphers 'ECDHE+AES-GCM:!DHE:DHE+AES-GCM' ID SUITE BITS PROT METHOD CIPHER MAC KEYX 0: 49200 ECDHE-RSA-AES256-GCM-SHA384 256 TLS1.2 Native AES-GCM SHA384 ECDHE_RSA 1: 49199 ECDHE-RSA-AES128-GCM-SHA256 128 TLS1.2 Native AES-GCM SHA256 ECDHE_RSA And lastly a soft exclusion: tmm --clientciphers 'ECDHE+AES-GCM:-DHE:DHE+AES-GCM' ID SUITE BITS PROT METHOD CIPHER MAC KEYX 0: 49200 ECDHE-RSA-AES256-GCM-SHA384 256 TLS1.2 Native AES-GCM SHA384 ECDHE_RSA 1: 49199 ECDHE-RSA-AES128-GCM-SHA256 128 TLS1.2 Native AES-GCM SHA256 ECDHE_RSA 2: 159 DHE-RSA-AES256-GCM-SHA384 256 TLS1.2 Native AES-GCM SHA384 EDH/RSA 3: 158 DHE-RSA-AES128-GCM-SHA256 128 TLS1.2 Native AES-GCM SHA256 EDH/RSA Note that in the second example, the hard exclusion, we used '!DHE' and even though we then explicitly added 'DHE+AES-GCM' those ciphers were not enabled. This is because, once excluded with a hard exclusion, ciphers cannot be re-enabled. In the third example, the soft exclusion, we used '-DHE' and then 'DHE+AES-GCM'. This time it did enable those ciphers, which is possible with a soft exclusion. You might be wondering what soft disabling is useful for; why would you ever want to remove ciphers only to add them again? Reordering the ciphers is a common use case. As an example, DEFAULT orders ciphers differently in different versions, but mainly based on strength – bit size. Let's say we know 3DES is really 112-bit equivalent strength and not 168-bit as it is usually labeled. For some reason, maybe legacy clients, we can't disable them, but we want them to be last on the list. One way to do this is to first configure the DEFAULT list, then remove all of the 3DES ciphers. But then add the 3DES ciphers back explicitly – at the end of the list. Let's try it – compare the following: tmm --clientciphers 'DEFAULT' ID SUITE BITS PROT METHOD CIPHER MAC KEYX 0: 159 DHE-RSA-AES256-GCM-SHA384 256 TLS1.2 Native AES-GCM SHA384 EDH/RSA 1: 158 DHE-RSA-AES128-GCM-SHA256 128 TLS1.2 Native AES-GCM SHA256 EDH/RSA 2: 107 DHE-RSA-AES256-SHA256 256 TLS1.2 Native AES SHA256 EDH/RSA 3: 57 DHE-RSA-AES256-SHA 256 TLS1 Native AES SHA EDH/RSA 4: 57 DHE-RSA-AES256-SHA 256 TLS1.1 Native AES SHA EDH/RSA 5: 57 DHE-RSA-AES256-SHA 256 TLS1.2 Native AES SHA EDH/RSA 6: 57 DHE-RSA-AES256-SHA 256 DTLS1 Native AES SHA EDH/RSA 7: 103 DHE-RSA-AES128-SHA256 128 TLS1.2 Native AES SHA256 EDH/RSA 8: 51 DHE-RSA-AES128-SHA 128 TLS1 Native AES SHA EDH/RSA 9: 51 DHE-RSA-AES128-SHA 128 TLS1.1 Native AES SHA EDH/RSA 10: 51 DHE-RSA-AES128-SHA 128 TLS1.2 Native AES SHA EDH/RSA 11: 51 DHE-RSA-AES128-SHA 128 DTLS1 Native AES SHA EDH/RSA 12: 22 DHE-RSA-DES-CBC3-SHA 168 TLS1 Native DES SHA EDH/RSA 13: 22 DHE-RSA-DES-CBC3-SHA 168 TLS1.1 Native DES SHA EDH/RSA 14: 22 DHE-RSA-DES-CBC3-SHA 168 TLS1.2 Native DES SHA EDH/RSA 15: 22 DHE-RSA-DES-CBC3-SHA 168 DTLS1 Native DES SHA EDH/RSA 16: 157 AES256-GCM-SHA384 256 TLS1.2 Native AES-GCM SHA384 RSA 17: 156 AES128-GCM-SHA256 128 TLS1.2 Native AES-GCM SHA256 RSA 18: 61 AES256-SHA256 256 TLS1.2 Native AES SHA256 RSA 19: 53 AES256-SHA 256 TLS1 Native AES SHA RSA 20: 53 AES256-SHA 256 TLS1.1 Native AES SHA RSA 21: 53 AES256-SHA 256 TLS1.2 Native AES SHA RSA 22: 53 AES256-SHA 256 DTLS1 Native AES SHA RSA 23: 60 AES128-SHA256 128 TLS1.2 Native AES SHA256 RSA 24: 47 AES128-SHA 128 TLS1 Native AES SHA RSA 25: 47 AES128-SHA 128 TLS1.1 Native AES SHA RSA 26: 47 AES128-SHA 128 TLS1.2 Native AES SHA RSA 27: 47 AES128-SHA 128 DTLS1 Native AES SHA RSA 28: 10 DES-CBC3-SHA 168 TLS1 Native DES SHA RSA 29: 10 DES-CBC3-SHA 168 TLS1.1 Native DES SHA RSA 30: 10 DES-CBC3-SHA 168 TLS1.2 Native DES SHA RSA 31: 10 DES-CBC3-SHA 168 DTLS1 Native DES SHA RSA 32: 49200 ECDHE-RSA-AES256-GCM-SHA384 256 TLS1.2 Native AES-GCM SHA384 ECDHE_RSA 33: 49199 ECDHE-RSA-AES128-GCM-SHA256 128 TLS1.2 Native AES-GCM SHA256 ECDHE_RSA 34: 49192 ECDHE-RSA-AES256-SHA384 256 TLS1.2 Native AES SHA384 ECDHE_RSA 35: 49172 ECDHE-RSA-AES256-CBC-SHA 256 TLS1 Native AES SHA ECDHE_RSA 36: 49172 ECDHE-RSA-AES256-CBC-SHA 256 TLS1.1 Native AES SHA ECDHE_RSA 37: 49172 ECDHE-RSA-AES256-CBC-SHA 256 TLS1.2 Native AES SHA ECDHE_RSA 38: 49191 ECDHE-RSA-AES128-SHA256 128 TLS1.2 Native AES SHA256 ECDHE_RSA 39: 49171 ECDHE-RSA-AES128-CBC-SHA 128 TLS1 Native AES SHA ECDHE_RSA 40: 49171 ECDHE-RSA-AES128-CBC-SHA 128 TLS1.1 Native AES SHA ECDHE_RSA 41: 49171 ECDHE-RSA-AES128-CBC-SHA 128 TLS1.2 Native AES SHA ECDHE_RSA 42: 49170 ECDHE-RSA-DES-CBC3-SHA 168 TLS1 Native DES SHA ECDHE_RSA 43: 49170 ECDHE-RSA-DES-CBC3-SHA 168 TLS1.1 Native DES SHA ECDHE_RSA 44: 49170 ECDHE-RSA-DES-CBC3-SHA 168 TLS1.2 Native DES SHA ECDHE_RSA tmm --clientciphers 'DEFAULT:-3DES:!SSLv3:3DES+ECDHE:3DES+DHE:3DES+RSA' ID SUITE BITS PROT METHOD CIPHER MAC KEYX 0: 159 DHE-RSA-AES256-GCM-SHA384 256 TLS1.2 Native AES-GCM SHA384 EDH/RSA 1: 158 DHE-RSA-AES128-GCM-SHA256 128 TLS1.2 Native AES-GCM SHA256 EDH/RSA 2: 107 DHE-RSA-AES256-SHA256 256 TLS1.2 Native AES SHA256 EDH/RSA 3: 57 DHE-RSA-AES256-SHA 256 TLS1 Native AES SHA EDH/RSA 4: 57 DHE-RSA-AES256-SHA 256 TLS1.1 Native AES SHA EDH/RSA 5: 57 DHE-RSA-AES256-SHA 256 TLS1.2 Native AES SHA EDH/RSA 6: 57 DHE-RSA-AES256-SHA 256 DTLS1 Native AES SHA EDH/RSA 7: 103 DHE-RSA-AES128-SHA256 128 TLS1.2 Native AES SHA256 EDH/RSA 8: 51 DHE-RSA-AES128-SHA 128 TLS1 Native AES SHA EDH/RSA 9: 51 DHE-RSA-AES128-SHA 128 TLS1.1 Native AES SHA EDH/RSA 10: 51 DHE-RSA-AES128-SHA 128 TLS1.2 Native AES SHA EDH/RSA 11: 51 DHE-RSA-AES128-SHA 128 DTLS1 Native AES SHA EDH/RSA 12: 157 AES256-GCM-SHA384 256 TLS1.2 Native AES-GCM SHA384 RSA 13: 156 AES128-GCM-SHA256 128 TLS1.2 Native AES-GCM SHA256 RSA 14: 61 AES256-SHA256 256 TLS1.2 Native AES SHA256 RSA 15: 53 AES256-SHA 256 TLS1 Native AES SHA RSA 16: 53 AES256-SHA 256 TLS1.1 Native AES SHA RSA 17: 53 AES256-SHA 256 TLS1.2 Native AES SHA RSA 18: 53 AES256-SHA 256 DTLS1 Native AES SHA RSA 19: 60 AES128-SHA256 128 TLS1.2 Native AES SHA256 RSA 20: 47 AES128-SHA 128 TLS1 Native AES SHA RSA 21: 47 AES128-SHA 128 TLS1.1 Native AES SHA RSA 22: 47 AES128-SHA 128 TLS1.2 Native AES SHA RSA 23: 47 AES128-SHA 128 DTLS1 Native AES SHA RSA 24: 49200 ECDHE-RSA-AES256-GCM-SHA384 256 TLS1.2 Native AES-GCM SHA384 ECDHE_RSA 25: 49199 ECDHE-RSA-AES128-GCM-SHA256 128 TLS1.2 Native AES-GCM SHA256 ECDHE_RSA 26: 49192 ECDHE-RSA-AES256-SHA384 256 TLS1.2 Native AES SHA384 ECDHE_RSA 27: 49172 ECDHE-RSA-AES256-CBC-SHA 256 TLS1 Native AES SHA ECDHE_RSA 28: 49172 ECDHE-RSA-AES256-CBC-SHA 256 TLS1.1 Native AES SHA ECDHE_RSA 29: 49172 ECDHE-RSA-AES256-CBC-SHA 256 TLS1.2 Native AES SHA ECDHE_RSA 30: 49191 ECDHE-RSA-AES128-SHA256 128 TLS1.2 Native AES SHA256 ECDHE_RSA 31: 49171 ECDHE-RSA-AES128-CBC-SHA 128 TLS1 Native AES SHA ECDHE_RSA 32: 49171 ECDHE-RSA-AES128-CBC-SHA 128 TLS1.1 Native AES SHA ECDHE_RSA 33: 49171 ECDHE-RSA-AES128-CBC-SHA 128 TLS1.2 Native AES SHA ECDHE_RSA 34: 49170 ECDHE-RSA-DES-CBC3-SHA 168 TLS1 Native DES SHA ECDHE_RSA 35: 49170 ECDHE-RSA-DES-CBC3-SHA 168 TLS1.1 Native DES SHA ECDHE_RSA 36: 49170 ECDHE-RSA-DES-CBC3-SHA 168 TLS1.2 Native DES SHA ECDHE_RSA 37: 22 DHE-RSA-DES-CBC3-SHA 168 TLS1 Native DES SHA EDH/RSA 38: 22 DHE-RSA-DES-CBC3-SHA 168 TLS1.1 Native DES SHA EDH/RSA 39: 22 DHE-RSA-DES-CBC3-SHA 168 TLS1.2 Native DES SHA EDH/RSA 40: 22 DHE-RSA-DES-CBC3-SHA 168 DTLS1 Native DES SHA EDH/RSA 41: 10 DES-CBC3-SHA 168 TLS1 Native DES SHA RSA 42: 10 DES-CBC3-SHA 168 TLS1.1 Native DES SHA RSA 43: 10 DES-CBC3-SHA 168 TLS1.2 Native DES SHA RSA 44: 10 DES-CBC3-SHA 168 DTLS1 Native DES SHA RSA I added something else in there which I'll come back to later. Pitfalls As should be clear by now cipher configuration is a powerful tool, but as the song says, every tool is a weapon if you hold it right. And weapons are dangerous. With a little careless handling it is easy to lose a toe – or a leg. Whenever you are working with cipher suite configuration the old rule of 'measure twice, cut once' applies – and then double-check the work to be certain. There are several common pitfalls which await you. Misuse Perhaps the most common pitfall is simply misuse – using cipher suite configuration for that which it is not intended. And the single most common example of this comes from using cipher configuration to manipulate protocols. Given the keywords, as described above, it seems common for users to presume that if they want to disable a protocol, such as TLSv1.0, then the way to do that is to use a cipher suite keyword, such as !TLSv1. And, indeed, this may seem to work – but it isn't doing what is desired. The protocol is not disabled, only the ciphers that are supported for that protocol are. The protocol is configured on the VIP independently of the ciphers. !TLSv1 would disable all ciphers supported under the TLSv1.0 protocol, but not the protocol itself. Note that the protocol negotiation and the cipher negotiation in the SSL/TLS handshake are independent. What happens if the VIP only supports TLSv1.0/v1.1/v1.2 and the client only supports SSLv3 & TLSv1.0? Well, they'd agree on TLSv1.0 as the common protocol. The cipher list the client sends in the Client Hello is independent of the protocol that is eventually negotiated. Say the client sends AES128-SHA and the server has that in its list, so it is selected. OK, we've agreed on a protocol and a cipher suite – only the server won't do any ciphers on TLSv1.0 because of '!TLSv1' in the ciphers configuration, and the connection will fail. That may seem like splitting hairs, but it makes a difference. If a scanner is looking for protocols that are enabled, and not the full handshake, it may still flag a system which has been configured this way. The protocol is negotiated during the SSL/TLS handshake before the cipher is selected. This also means the system is doing more work, as the handshake continues further before failing, and the log messages may be misleading. Instead of logging a protocol incompatibility the logs will reflect the failure to find a viable cipher, which can be a red herring when it comes time to debug the configuration. The right way to do this is to actually disable the protocol, which doesn't involve the cipher suite configuration at all. For the control plane this is done through the ssl-protocol directive: tmsh list sys http ssl-protocol sys httpd { ssl-protocol "all -SSLv2 -SSLv3" } For example, if we wanted to disable TLSv1.0: tmsh modify sys http ssl-protocol 'all -SSLv2 -SSLv3 -TLSv1' tmsh list sys http ssl-protocol sys httpd { ssl-protocol "all -SSLv2 -SSLv3 -TLSv1" } For the data plane this can be done via the Options List in the SSL Profile GUI, via the No SSL, No TLSv1.1, etc. directives: Or via the command line: tmsh list ltm profile client-ssl Test options ltm profile client-ssl Test { options { dont-insert-empty-fragments } } tmsh modify ltm profile client-ssl Test options {dont-insert-empty-fragments no-tlsv1} tmsh list /ltm profile client-ssl Test options ltm profile client-ssl Test { options { dont-insert-empty-fragments no-tlsv1 } } The values are slightly different on the command line, use this command to see them all: tmsh modify ltm profile client-ssl <profile-name> options ? Use the right tool for the job and you'll be more likely to succeed. Truncation As I previously mentioned, in versions up to 11.5.0 the ciphers configuration string was truncated at 256 bytes. Starting in 11.5.0 that was increased to 768 bytes (see K11481: The SSL profile cipher lists have a 256 character limitation for more information), but that can still silently truncate long configurations. This is not a theoretical issue, we've seen users run into this in the real world. For example, little over a year ago I worked with a customer who was then using 11.4.1 HF8. They were trying to very precisely control which ciphers were enabled, and their order. In order to do this they'd decided to enumerate every individual cipher in their configuration – resulting in this cipher suite configuration string: TLSv1_2+ECDHE-RSA-AES256-CBC-SHA:TLSv1_1+ECDHE-RSA-AES256-CBC-SHA:TLSv1_2+ECDHE-RSA-AES128-CBC-SHA:TLSv1_1+ECDHE-RSA-AES128-CBC-SHA:TLSv1_2+DHE-RSA-AES256-SHA:TLSv1_1+DHE-RSA-AES256-SHA:TLSv1_2+DHE-RSA-AES128-SHA:TLSv1_1+DHE-RSA-AES128-SHA:TLSv1_2+AES256-SHA256:TLSv1_1+AES256-SHA:TLSv1_2+AES128-SHA256:TLSv1_1+AES128-SHA:TLSv1+ECDHE-RSA-AES256-CBC-SHA:TLSv1+ECDHE-RSA-AES128-CBC-SHA:TLSv1+DHE-RSA-AES256-SHA:TLSv1+DHE-RSA-AES128-SHA:TLSv1+AES256-SHA:TLSv1+AES128-SHA:TLSv1+DES-CBC3-SHA That string would save in the configuration and it was there if you looked at the bigip.conf file, but it was silently truncated when the configuration was loaded. Since this was 11.4.1, only the first 256 bytes were loaded successfully, which made the running configuration: TLSv1_2+ECDHE-RSA-AES256-CBC-SHA:TLSv1_1+ECDHE-RSA-AES256-CBC-SHA:TLSv1_2+ECDHE-RSA-AES128-CBC-SHA:TLSv1_1+ECDHE-RSA-AES128-CBC-SHA:TLSv1_2+DHE-RSA-AES256-SHA:TLSv1_1+DHE-RSA-AES256-SHA:TLSv1_2+DHE-RSA-AES128-SHA:TLSv1_1+DHE-RSA-AES128-SHA:TLSv1_2+AES256-S Note the last suite is truncated itself, which means it was invalid and therefore ignored. If their configuration had worked they would've had nineteen protocol+suite combinations – instead they had eight. Needless to say, this caused some problems. This customer was missing ciphers that they expected to have working. That is bad enough – but it could be worse. Let's imagine a customer who wants to specify several specific ciphers first, then generally enable a number of other TLSv1.2 & TLSv1.1 ciphers. And, of course, they are careful to disable dangerous ciphers! TLSv1_2+ECDHE-RSA-AES256-CBC-SHA:TLSv1_1+ECDHE-RSA-AES256-CBC-SHA:TLSv1_2+ECDHE-RSA-AES128-CBC-SHA:TLSv1_1+ECDHE-RSA-AES128-CBC-SHA:TLSv1_2+DHE-RSA-AES256-SHA:TLSv1_1+DHE-RSA-AES256-SHA:TLSv1_2+DHE-RSA-AES128-SHA:TLSv1_1+DHE-RSA-AES128-SHA:TLSv1_2:TLSv1_1:!RC4:!MD5:!ADH:!DES:!EXPORT OK, that looks fairly solid, right? What do you suppose the problem with this is? This is the problem; in 11.4.1 and earlier it would truncate to this: TLSv1_2+ECDHE-RSA-AES256-CBC-SHA:TLSv1_1+ECDHE-RSA-AES256-CBC-SHA:TLSv1_2+ECDHE-RSA-AES128-CBC-SHA:TLSv1_1+ECDHE-RSA-AES128-CBC-SHA:TLSv1_2+DHE-RSA-AES256-SHA:TLSv1_1+DHE-RSA-AES256-SHA:TLSv1_2+DHE-RSA-AES128-SHA:TLSv1_1+DHE-RSA-AES128-SHA:TLSv1_2:TLSv1_1: All of the exclusions were truncated off! Now we have the opposite problem – there are a number of ciphers enabled which the customer expects to be disabled! And they're BAD ciphers – ADH, DES, MD5, RC4. So this customer would be at high risk without realizing it. Be aware of this; it is very sneaky. The configuration will look fine; the truncation happens in the code when it loads the configuration. This is also one reason why I always recommend listing your exclusions first in the configuration string. Then you can never accidentally enable something. Unintended Consequences Let's say a new CVE is announced which exposes a very serious vulnerability in SSLv3 & TLSv1.0. There is no way to mitigate it, and the only solution is to limit connections to only TLSv1.1 & TLSv1.2. You want a cipher configuration to accomplish this. It seems straight-forward – just configure it to use only ciphers on TLSv1.1 & TLSv1.2: tmsh modify ltm profile client-ssl <profile> ciphers 'TLSv1_2:TLSv1_1' Congratulations, you've solved the problem. You are no longer vulnerable to this CVE. You know there is a but coming, right? What's wrong? Well, you just enabled all TLSv1.2 & TLSv1.1 ciphers. That includes such gems as RC4-MD5, RC4-SHA, DES, and a few ADH (Anonymous Diffie-Hellman) suites which have no authentication. As recently as 11.3.0 you'd even be enabling some 40-bit EXPORT ciphers. (We pulled them out of NATIVE in 11.4.0.) So you just leapt out of the frying pan and into the fire. Always, always, always check the configuration before using it. Running that through tmm --clientciphers 'TLSv1_2:TLSv1_1' would've raised red flags. Instead, this configuration would work without causing those problems: tmsh modify ltm profile client-ssl <profile> ciphers 'DEFAULT:!TLSv1:!SSLv3' Another option, and probably the better one, is to disable the SSLv3 and TLSv1.0 protocols on the VIP. As I discussed above. Of course, you can do both – belt and suspenders. And just to show you how easy it is to make such a mistake, F5 did this! In K13400: SSL 3.0/TLS 1.0 BEAST vulnerability CVE-2011-3389 and TLS protocol vulnerability CVE-2012-1870 we originally had the following in the mitigation section: Note: Alternatively, to configure an SSL profile to use only TLS 1.1-compatible, TLS 1.2-compatible, AES-GCM, or RC4-SHA ciphers using the tmsh utility, use the following syntax: tmsh create /ltm profile client-ssl <name> ciphers TLSv1_1:TLSv1_2:AES-GCM:RC4-SHA Yes, I had this fixed long ago. Remember back in the section on keywords I had this comparison example: tmm --clientciphers 'DEFAULT' tmm --clientciphers 'DEFAULT:-3DES:!SSLv3:3DES+ECDHE:3DES+DHE:3DES+RSA' Who caught the '!SSLv3' in the second line? Why do you think I added that? Did I need to? Hint: What do you think the side effect of blanket enabling all of those 3DES ciphers would be if I didn't explicitly disable SSLv3? Cipher Ordering In SSL/TLS there are two main models to the cipher suite negotiation – Server Cipher Preference or Client Cipher Preference. What does this mean? In SSL/TLS the client sends the list of cipher suites it is willing and able to support in the Client Hello. The server also has its list of cipher suites that it is willing and able to support. In Client Cipher Preference the server will select the first cipher on the client's list that is also in the server's list. Effectively this gives the client influence over which cipher is selected based on the order of the list it sends. In Server Cipher Preference the server will select the first server on its own list that is also on the client's list. So the server gives the order of its list precedence. BIG-IP always operates in Server Cipher Preference, so be very careful in how you order your cipher suites. Preferred suites should go at the top of the list. How you order your cipher suites will directly affect which ciphers are used. It doesn't matter if a stronger cipher is available if a weak cipher is matched first. HTTP/2 How is HTTP/2 a pitfall? The HTTP/2 RFC7540 includes a blacklist of ciphers that are valid in TLS, but should not be used in HTTP/2. This can cause a problem on a server where the TLS negotiation is decoupled from the ALPN exchange for the higher level protocol. The server might select a cipher which is on the blacklist, and then when the connection attempts to step up to HTTP/2 via ALPN the client may terminate the connection with extreme prejudice. It is well known enough to be called out in the RFC – Section 9.2.2. F5 added support for HTTP/2 in 12.0.0 – and we fell into this trap. Our DEFAULT ciphers list was ordered such that it was almost certain a blacklisted cipher would be selected.; This was fixed in 12.0.0 HF3 and 12.1.0, but serves as an example. On 12.0.0 FINAL through 12.0.0 HF2 a simple fix was to configure the ciphers to be 'ECDHE+AES-GCM:DEFAULT'. ECDHE+AES-GCM is guaranteed to be supported by any client compliant with RFC7540 (HTTP/2). Putting it first ensures it is selected before any blacklisted cipher. 3DES Back in the section on ciphers I mentioned that we label 3DES as being 168-bit, but that it only provides the equivalent of 112-bit strength. So, what did I mean by that? DES operates on 64-bit data blocks, using 56-bits of key. So it has a strength of 2 56 . 3DES, aka Triple DES, was a stop-gap designed to stretch the life of DES once 56-bits was too weak to be safe, until AES became available. 3DES use the exact same DES cipher, it just uses it three times – hence the name. So you might think 3x56-bits = 168-bits. 2 168 strong. Right? No, not really. The standard implementation of 3DES is known as EDE – for Encrypt, Decrypt, Encrypt. (For reasons we don't need to get into here.) You take the 64-bit data block, run it through DES once to encrypt it with K 1 , then run it through again to decrypt it using K 2 , then encrypt it once again using K 3 . Three keys, that's still 168-bits, right? Well, you'd think so. But the devil is in the (implementation) details. First of all there are three keying options for 3DES: - Keying option 1: K1, K2, K3 – 168 unique bits (but only 112-bit strength!) - Keying option 2: K1, K2, K1 – 112 unique bits (but only 80-bit strength!) - Keying option 3: K1, K1, K1 – 56 unique bits, 56-bit strength (Equivalent to DES due to EDE!) F5 uses keying option one, so we have 168-bits of unique key. However, 3DES with keying option one is subject to a meet-in-the-middle cryptographic attack which only has a cost of 2 112 . It has even been reduced as low as 2 108 , as described in this paper. So it does not provide the expected 168-bits of security, and is in fact weaker than AES128. To add some confusion, due to an old issue we used to describe 3DES as being 192-bit. See: K17296: The BIG-IP system incorrectly reports a 192-bit key length for cipher suites using 3DES (DES-CBC3) for more details. Of course, with the appearance of the Sweet32 attack last fall I would encourage everyone to disable 3DES completely whenever possible. We're also seeing a growing number of scanners and audit tools recategorizing 3DES as a 'Medium' strength cipher, down from 'High', and correspondingly lowering the grade for any site still supporting it. If you don't need it, turn it off. See K13167034: OpenSSL vulnerability CVE-2016-2183 for more information. Conclusion Believe it or not, that's the quick overview of cipher suite configuration on BIG-IP. There are many areas where we could dig in further and spend some time in the weeds, but I hope that this article helps at least one person understand cipher suite configuration better, and to avoid the pitfalls that commonly claim those who work with them. Additional Resources This article is by no means comprehensive, and for those interested I'd encourage additional reading: BIG-IP SSL Cipher History by David Holmes, here on DevCentral Cipher Rules And Groups in BIG-IP v13 by Chase Abbott, also on DevCentral OpenSSL Cipher Documentation K8802: Using SSL ciphers with BIG-IP Client SSL and Server SSL profiles K15194: Overview of the BIG-IP SSL/TLS cipher suite K13163: SSL ciphers supported on BIG-IP platforms (11.x - 12.x) K13156: SSL ciphers used in the default SSL profiles (11.x - 12.x) K17370: Configuring the cipher strength for SSL profiles (12.x) K13171: Configuring the cipher strength for SSL profiles (11.x) K14783: Overview of the Client SSL profile (11.x - 12.x) K14806: Overview of the Server SSL profile (11.x - 12.x)21KViews9likes17CommentsSSL Passthrough, SSL Offloading and SSL Bridging
Hi all, Can anyone help me understand how to configure VIPs SSL Passthrough, SSL Offloading and SSL Bridging scenarios? What components are taken into consideration for each of the requirement as in VIP type, Pool member health monitor, Client and Server SSL profile, Client and Server Protocol profiles, HTTP profile and persistence if any. Thanks.13KViews1like1CommentLTM Policy
Introduction F5 Local Traffic Manager (LTM) has always provided customers with the ability to optimize their network deployment by providing tools that can observe network traffic which also allow the administrator to configure various actions to take based on those observations. This is embodied in the fundamental concept of a virtual server, which groups traffic into pools based on observed IP addresses, ports, and DNS names, and furthered by extensions like iRules, which provide a tremendous amount of flexibility and customizability. For HTTP traffic up until BIG-IP 11.4.0, the HTTP Class module provided the ability for an administrator to match various parts of an HTTP transaction using regular expressions, and specify an associated action to take. These include actions such as inserting or removing a header, sending a redirect, or deciding to which vlan or pool a request should be forwarded. This was a flexible approach, but regular expression processing can be performance intensive, serial evaluation can get bogged down when the number of conditions increases, and sometimes proper coverage would require the administrator to configure specific ordering of evaluation. With the growth of traffic on the internet, and the explosion of HTTP traffic in particular, organizations are increasingly in need of more sophisticated tools which can observe traffic more in-depth and execute actions with good performance. LTM Policy LTM Policy first appeared in BIG-IP 11.4.0 as a flexible and high-performance replacement for HTTP Class. Additional capabilities and features have been continuously added since that time. At its core, LTM Policy is a data-driven rules engine which is tightly integrated with the Traffic Management Microkernel (tmm). One of the big improvements brought by LTM Policy is the accelerated and unique way that it can evaluate all conditions in parallel. When one or more policies are applied to a virtual server, they go through a compilation step that builds a combined, high-performance internal decision tree for all of the rules, conditions, and actions. This optimized representation of a virtual server's policies guarantees that every condition is only evaluated once and allows for parallel evaluation of all conditions, as well as other performance boosts, such as short-circuit evaluation. Another improvement is that conditions can observe attributes from both the request and the response, not just the request. Unlike HTTP Class, where its first-match-win could lead to ordering issues, LTM Policy can trigger on the first matching condition, all matches, the most specific match, or execute a default action when there are no condition matches. Policies What is a policy? A policy is a collection of rules, and is associated with a matching strategy, aspects the policy requires, and other aspects the policy controls. Every rule in a policy has a set of conditions and a set of actions, where either set may be empty. Conditions Conditions describe the comparisons that occur when traffic flows through a virtual server. The properties available to a condition depend on what aspect the policy requires. (See Conditions chart below.) For example, if a policy requires the http aspect, then HTTP-specific entities like headers, cookies, URI can be used in comparisons. If the policy requires this aspect: Then these Operands are available: Some of the properties that are available for comparison in conditions: none cpu-usage 1, 5, 15 minute load average tcp tcp (+ all above) IP address, port, mss http geoip geographic region associated with IP address http-uri domain, path, query string http-method HTTP method, e.g. GET, POST, etc. http-version versions of HTTP protocol http-status numeric and text response status codes http-host host and port value from Host: header http-header header name http-referer all components of Referer: URI http-cookie cookie name http-set-cookie all components of Set-Cookie http-basic-auth username, password http-user-agent (+ all above) browser type, version; device make, model client-ssl client-ssl protocol, cipher, cipher strength ssl-persistence ssl-extension server name, alpn, npn ssl-cert common-name from cert Actions Actions are commands which are executed when the associated conditions match. As with conditions, the actions available to a policy depend on which aspects the policy controls. (See Action chart below.) For example, if a policy controls the forwarding aspect, then forwarding-specific actions, such as selecting a pool, virtual server, or vlan are available. A default rule is a rule which has no conditions - and is therefore considered to always be a match - plus one or more actions. A default rule is typically ordered such that it would be the last rule evaluated. In policies with a first-match or best-match strategy (see below), the default rule is only run when no other rules match; policies with an all-match strategy will always execute default rule actions. If the policy Controls this aspect: Then these Targets are available: Which enables you to specify some of these Actions: (none specified) ltm-policy disable LTM Policy http enable/disable HTTP filter http-uri replace path, query string, or full URI http-host replace Host: header http-header insert/remove/replace HTTP header http-referer insert/remove/replace Referer: http-cookie insert/remove Cookie in request http-set-cookie insert/remove Set-Cookie in response log write to system logs tcl evaluate Tcl expression tcp-nagle enable/disable Nagle's algorithm forwarding forward pick pool, vlan, nexthop, rateclass http-reply send redirect to client caching cache enable/disable caching compression compress enable/disable compression decompress enable/disable decompression classification pem classify traffic category/application request-adaptation request-adapt enable/disable content adaptation through internal virtual server response-adaptation response-adapt enable/disable content adaptation through internal virtual server server-ssl server-ssl enable/disable server ssl persistence persist Select persistence (e.g. cookie, source address, hash, etc) Strategy All policies are associated with a strategy, which determines the behavior when multiple rules have matching conditions. As their titles suggest, the First Match strategy will execute the actions for the first rule that matches, All Match strategy will execute the actions for all rules which match, and Best Match will select the rule which has the most specific match. The most specific match is determined by comparing the rules for the number of conditions that matched, the longest matches, or the matches which are deemed to be more significant. Multiple policies can be applied to a virtual server. The only restriction is that each aspect of the system (e.g. forwarding, caching, see Actions table) may only be controlled by one policy. This is a reasonable restriction to avoid ambiguous situations where multiple policies controlling the same aspect match but specify conflicting actions. LTM Policy and iRules iRules are an important and long-standing part of the BIG-IP architecture, and pervasive throughout the product. There is some overlap between what can be controlled by LTM Policy and iRules, not surprisingly that most of the overlap is in the realm of HTTP traffic handling. And just about anything that is possible in LTM Policy can also be written as an iRule. LTM Policy is a structured, data-driven collection of rules. iRules and Tcl are more of a general purpose programming language which provide lots of power and flexibility, but also require some programming skills. Because policies are structured and can be created by populating tables in a web UI, it is more approachable for those with limited programming skills. So, when to use LTM Policy and when to use iRules? As a general rule, where there is identical functionality, LTM Policy should be able to offer better performance. There are situations where LTM Policy may be a better choice. when rules need to span different events, (e.g. a rule that considers both request and response) dealing with HTTP headers and cookies (e.g. LTM Policy has more direct access to internal HTTP state) when there are large number of conditions (pre-compiled internal decision trees can evaluate conditions in parallel) when conditions have a lot of commonality For supported events (such as HTTP_REQUEST or HTTP_RESPONSE) , LTM Policy evaluation occurs before iRule evaluation. This means that it is possible to write an iRule to override an LTM Policy decision. LTM Policy leverages standard iRule functions Beginning with releases in 2015, selected LTM Policy actions support Tcl command substitutions and the ability to call standard iRule commands . The intention is to empower the administrator with quick, read-only access to the runtime environment. For example, it is possible to specify an expression which includes data about the current connection, such as [HTTP::uri ] which gets substituted at runtime to the URI value of the current request. Tcl support in LTM Policy is not intended as a hook for general purpose programming, and can result in an error when making calls which might have side effects, or calls which might cause a processing delay. There is also a performance trade-off to consider as well, as Tcl’s flexibility comes with a runtime cost. Below is a summary of actions which support Tcl expressions: Target Action(s) Parameter Note http-uri replace value Full URI path URI path component query string URI query string component http-header insert value Arbitrary HTTP header replace value http-cookie insert value Cookie: header http-host replace value Host: header http-referer replace value Referer: header http-set-cookie insert value Set-Cookie: header domain path log message Write to syslog tcl * setvar expression set variable in Tcl runtime environment http-reply * redirect location redirect client to location * This action has supported Tcl expressions since BigIP 11.4. While a comprehensive list of valid Tcl commands is beyond the scope of this document, it should be noted that not every Tcl command will be valid at any given time. Most standard iRule commands are associated with a tmm event , as are LTM Policy actions. For example, in the LTM Policy event request, iRule commands which are valid in the context of HTTP_REQUEST event will validate without error. A validation error will be raised if one attempts to use iRule commands that are not valid in the current event scope. For example, in an LTM Policy action associated with the request (i.e. HTTP_REQUEST) event context, specifying an expression like [HTTP::status] , which is only valid in a response event context, will not pass the validation check. iRules support LTM Policy There are several iRule commands defined which can be used to access information about policies attached to the virtual server. POLICY::controls - iRule command which returns details about the policy controls for the virtual server the iRule is enabled on POLICY::names - iRule command which returns details about the policy names for the virtual server the iRule is enabled on. POLICY::rules - iRule command which returns the policy rules of the supplied policy that had actions executed. POLICY::targets - iRule command which returns or sets properties of the policy rule targets for the policies associated with the virtual server that the iRule is enabled on What can I do with it? Sky's the limit. Here are some sample tasks and LTM Policies that could be used to implement them. Keep in mind that the policy definitions shown below, which at first glance appear to be more complicated than an equivalent iRule, are generated by a more friendly, web-based UI. The web UI allows the policy author to select valid options from menus, and build up a policy with little worry about programming and proper syntax. Task Configuration If system load average over the last minute is above 5, then disable compression. (This example assumes compression is competing for CPU cycles, and would not apply to scenarios where hardware compression is available.) Demonstrates cpu load conditions and ability to control compression. ltm policy /Common/load-avg { controls { compression } requires { http } rules { rule-1 { actions { 0 { compress disable } } conditions { 0 { cpu-usage last-1min greater values { 5 } } } ordinal 1 } } strategy /Common/first-match } If request is coming from California, forward it to pool pool_ca, and if the request comes from Washington, direct it to pool_wa. Otherwise forward to my-default-pool. Demonstrates geo-IP conditions, actions to forward to specific pool, and a default rule. ltm policy /Common/policy-sa { controls { forwarding } requires { http } rules { defaultrule { actions { 0 { forward select pool /Common/my-default-pool } } ordinal 3 } rule-1 { actions { 0 { forward select pool /Common/pool_ca } } conditions { 0 { geoip region-name values { California } } } ordinal 1 } rule-2 { actions { 0 { forward select pool /Common/pool_wa } } conditions { 0 { geoip region-name values { Washington } } } ordinal 2 } } strategy /Common/first-match } If the request was referred by my-affiliate.com and the response contains an image, set a cookie containing the current time. Example of a policy which spans both request and response, and uses Tcl command substitution for a value. ltm policy /Common/affiliate { requires { http } rules { rule-1 { actions { 0 { http-set-cookie response insert name MyAffiliateCookie value "tcl:[clock format [clock seconds] -format %H:%M:%S]" } } conditions { 0 { http-referer contains values { my-affiliate.com } } 1 { http-header response name Content-type starts-with values { image/ } } } ordinal 1 } } strategy /Common/first-match } Some rules of thumb While there are certainly exceptions to any rule, the following are some general usage guidelines. The maximum number of rules across active policies is limited by memory and cpu capability, but more than a thousand is starting to be a lot . Using Tcl command substitutions in actions can have performance implications; the more Tcl, the more performance impact. Only use Tcl commands that read and quickly return data; avoid those that change internal state or cause any delays. Conclusion LTM Policy is a powerful, flexible, and high-performance tool that administrators can leverage for application deployment. Its table-driven user interface requires very little in the way of programming experience, and new capabilities have been added continuously with each release.12KViews1like15CommentsBecoming F5 Certified - BIG-IP Administrator Certification - 101 & 201 Exams
How Do I Become a certified F5 BIG-IP Administrator? There are two exam you'll need to pass to become an F5 BIG-IP Administrator; Exam 101 – Application Delivery Fundamentals Exam 201 – TMOS Administration The 101 exam is mandatory, you will not be able to jump ahead to the 201 exam, or the 300 level exams. You may not like that, but once you take it you will really appreciate why F5 did this. If you work with F5 on a daily basis you are well aware there is more to becoming an F5 expert than memorizing commands and configuring BIG-IP modules. True application delivery administrators / engineers know you need skills ranging from networking, server administration, security, to development. That is the key to what separates a good F5 admin / engineer, from someone who is only comfortable adding a VIP or modifying pool members. The 101 exam was built to asses foundation knowledge in most of those areas. Not so much on the dev side, but basic iRule concepts are indeed on the 101 blueprint. About the Author Guest author Austin Geraci is a subject matter expert in F5 Networks Technology, and has worked in the ADC space for 10+ years. When he's not working with & evangelizing F5's cutting edge technology, you can find him on the squash courts, going for a ride around Lady Bird Lake, or listening to some live music in ATX. Check out WorldTechIT to read more from Austin. Step 1 - Sign up / Register yourself in F5s Credential Management System The very first thing you are required to complete before you schedule your actual exam is sign up for the F5 Certification program in the F5s Credential Management System. Once you do that you will receive an authorization email from F5 clearing you to schedule the 101 exam. The site is relatively intuitive once you register. This will be your home-base for things like F5 provided blueprints, study guides, and certification logos you can use on your website / business cards. I should note, the study guides you will find on this site are not full blown / the only thing you will need to pass the exams. They are outlines and examples of the objective topics. They will include references to material you should be basing your studies from. On the cred mgmt site you will also find an option to publish credentials, which allows you to send a certified email with your certification credentials from the credential verification services @ PEARSON VUE - note the email comes from a slightly different domain than you may be familiar with from PEARSON - CredentialVerificationServices@pearsoncred.com. This can be a handy tool to send your official creds to potential employers, boss or maybe even tease your co-workers ;). Step 2 - Schedule your test with Pearson Vue Some people will prefer to start studying before they schedule their first exam, other will take the opportunity to light a fire under their posterior. Either way, once you're cleared to test from F5 you can go ahead and schedule your F5 101 exam at F5s Certification landing page at PEARSONS VUE. Once you're registered & logged in at the PEARSON site you will see the 101 exam under pre-approved exams, go ahead and click on it - you will then be brought to a page with the exam details and a big blue button that says "Schedule this Exam". From there you will proceed to the test center search and pick a day and time that work best for you. Give yourself ample time to prepare and review all the blueprint material. I personally like morning exams, as I feel the most fresh in the am - but somehow it seems I'm always landing an afternoon slot that works with my schedule ;). When you do take the actual exam, make sure you are rested up, fed, and stress free the day of the exam. I have a friend who actually checks himself into a hotel the day before. This might sound extreme, but if you have a big family at home, the distraction free zone might prove to be worth it. However you prep in the days before, avoid cramming - it doesn't work for these types of tests. Step 3 - Preparing for the 101 Application Delivery Fundamentals Exam It's important you fully understand what you're getting yourself into before you go gung ho and schedule your exam. Review F5s 101 – Application Delivery Fundamentals Blueprint and create a plan & time-line to pass the exam. Be realistic and take it seriously, there's nothing like blowing money on the exam for a reality check, but some of you will inevitably need that motivation ;) You can go through the blueprint and create your own study guide, or you can opt to purchase the Application Delivery Fundamentals Study Guide by Philip Jönsson & Steven Iveson. There is also a free F5 101 exam study guide put together by Eric Mitchell on university.f5.com (requires login.) What did I do? I took a good look at the blueprint, and said phh I know this stuff! I then gave some quick study to sections I haven't hit on in a while. Even though I have a good background in networking and work on F5 gear on a daily basis, I found myself pressed for time, but I did indeed pass. If you are in a similar situation, I would not underestimate the exam, take your time to prepare. I didn't have Erics guide or the paid version when I took the exam - if I were to take the exam today I would probably do all 3, shell out $9.99 for the paid version, take a look at Erics study guide, and suppliment with some of my own material. F5 101 Exam Hands-On & Tips The 101 exam wasn't designed to run you ragged with hands on questions, but hands on preparation will definitely not hurt you. If you're not working on F5s BIG-IP software everyday, I would highly recommend you set yourself up with a virtual machine and purchase a license for the F5 BIG-IP Virtual Edition. For just under $100 bucks, you can have access to practice on just about all the F5 BIG-IP modules - the Policy Enforcement (PEM) & Link Controler (LC) modules are not included. You are also limited to 10mb bandwidth, and there are some limitations with the APM module, but that's no problem for the testing you'll need it for. It was a bold move by F5, which clearly shows their commitment to building competency on their platform. You can also get a free 90 day VE trial. If you do set up a VE box, make sure you get v11.4 up and running for the 101 (not always going to be v11.4), that's what the test (at this time) is based on. Remember this is a fundamentals exam, once you go through the blueprint you will see there are a lot of topics on fundamental knowledge of Network Engineering & Application Delivery. In other words, you won't have to go crazy with hands on - but it's not going to hurt & it will help you for the 201 test. Here are some quick tips to keep in mind when taking the 101 exam: Version # The test is currently based on TMOS v11.4 Number of questins on the 101 exam There are 70 questions on v1, and 80 on v2. V2 is going live sometime in Q1 of 2015. 10 of those v2 questions are unscored Passing score You will need a ~69% to pass the exam (may change with v2) Partial Credit No, All questions are scored equally, and no partial points are awareded. Time Limit 90 Minutes (non-native English Speaking residents automatically get 30 additional minutes. Time managment Manage your time appropriately, don't dwell on hard questions - especially if you're taking v2 - the question might not even count! So answer what you know and move on. Utilize the mark question feature and review what you didn't answer at the end of the exam, the back button is your lil friend. Step 4 Preparing for the 201 TMOS Administration Exam Allright, you made it this far - you passed the 101! Give yourself a pat on the back, but don't get carried away, the fun has just started ;). In about a day from passing the 101 you should receive an official pass letter and an authorization email from F5 clearing you to schedule the 201 exam. I'll take this opportunity to mention some people have reported failing the exam at the testing center but passing when they received their email from F5. I'm not sure what the deal with that is, I only mention this so you don't lose all hope if you fail at the testing center. Again, you can go ahead and schedule the 201 exam now, or take the time to review the 201 TMOS administration blueprint and study to fully assess the time frame for the task at hand. At the time of publishing this article, the only public F5 201 study guide is the one completed by the gentleman and scholar, Eric Mitchell, also available on university.f5.com. I used this Study guide and filled in some of the lighter sections with my own -I passed the exam. I was more mindful of the time crunch this time, but I still cut it close on the limit. From discussions in study groups this is done on purpose by F5, as part of their assessment on you. F5 201 Exam Hands-On & Tips If you take a look at the 201 Blueprint you'll quickly see the topics cover actual administration of the Traffic Management Operating System (TMOS). You will absolutely need hands on experience to pass this exam. If you're not working with the gear everyday, and you didn't take my advice to setup that BIG-IP VE for the 101- Now would be a good time. Let me be clear, you will not pass this exam unless you have experience working on BIG-IP Software and in particular the Local Traffic Manager (LTM) module. Keep in mind this test is geared to measure your "administration" skills, particularly from the GUI. The 300 level exams will test more of your working knowledge of the CLI. With that in mind, don't rule out all of the CLI - pay attention to the blueprint and don't put 100% faith in someone elses study guide. Here are some quick tips to keep in mind when taking the 201 exam: Version # The test is currently based on TMOS v11.1 Number of questions on the 201 exam 80 with 10 of those questions being unscored (F5 testing out new questions) Passing score You will need a ~69% to pass the exam Partial Credit No, All questions are scored equally, and no partial points are awarded. Time Limit 90 Minutes (non-native English Speaking residents automatically get 30 additional minutes. Time management You will need to work efficiently, and effectively - manage your time appropriately!! I can't harp on this enough, I almost ran out of time - it came right down to the wire for me! Remember, only 70 of the 80 answers count - answer what you are confident in, then move on. Once you've answered all you know do some quick math of reaming time divided by remaining questions and try to stick to that limit when going back to them. BIG-IP Administrator Recertification You may be wondering how do I recertify my BIG-IP Administrator Certification? First, you should know your certification is good for 2 years from the time you became F5 certified. As long as you are within the 2 years, you can take the 201 exam again, or achieve F5 CTS status. Which means passing the 302, 303, 304, or 301A & B exams. To clarify further, you need to pass both 301A & B, one won't cut it, opposed to the other 300 level exams that only consist of one exam. If you let your two years pass, you will indeed need to retake the 101 exam. Make sure you stay on top of your time-line, and create a plan that leaves you plenty of time before the 2 year expiration. What's next? Hopefully by this point you've received the victorious pass letter from F5 with the subject line "You have been certified as an F5 Certified BIG-IP Administrator!". Take some time to celebrate and acknowledge your accomplishment - you're now officially an F5 Certified BIG-IP Administrator ;) Don't stop there, if you log into F5s Credential Management System you will see you now have access to all the 300 level Certified Technology Specialist (CTS) blueprint & study guide. Note the 301b exam will only be available for you to take with PEARSON after you pass the 301a exam. Some people opt to conquer the 301a/b first, since they just finished the 201 exam, others take a break and hit one of the other exams. There is no right or wrong here, it's all a mater of preference. Which path are you going to choose? Here is a list of all the 300 level F5 CTS LTM Exams Exam 301a – LTM Specialist: Architect, Setup and Deploy Exam 301b – LTM Specialist: Maintain and Troubleshoot F5 CTS GTM Exams Exam 302 – GTM Specialist F5 CTS ASM Exams Exam 303 – ASM Specialist F5 CTS APM Exams Exam 304 – APM Specialist What has your experience been like with the F5 Certification program? Any tips or insights of your own you'd like to share? Maybe a question or two about the certification process? (NOT an actual cerfication question. Sharing certification exam details can result in loss of certification and expulsion from the program for life!)Well jump on in and comment below!11KViews0likes34CommentsUse F5 LTM as HTTP Proxy
Problem this snippet solves: LTM product can be used as a HTTP Proxy for servers and PC. This code explains minimum requirements to configure proxy feature without SWG module (configurations from Explicit Forward Proxy documentation without documentation ) and without explicit proxy iApp. How to use this snippet: All these commands must be run in bash shell. Create HTTP PROXY VIRTUAL SERVER Configure variables used in next commands Variable HTTPBaseName is used to create : Resolver object : RESOLVER_${HTTPBaseName} HTTP profile : http_${HTTPBaseName} virtual server : VS_${HTTPBaseName} HTTPBaseName="HTTP_FORWARD_PROXY" VS_IP="192.168.2.80" VS_PORT="8080" create DNS resolver with your DNS server (1.1.1.1 is for demo using cloudflare) tmsh create net dns-resolver RESOLVER_${HTTPBaseName} { forward-zones replace-all-with { . { nameservers replace-all-with { 1.1.1.1:domain { } } } } route-domain 0 } create HTTP profile type explicit, using DNS resolver. The parameter default-connect-handling allow enables HTTPS connections without SSL inspection tmsh create ltm profile http http_${HTTPBaseName} { defaults-from http-explicit explicit-proxy { default-connect-handling allow dns-resolver RESOLVER_${HTTPBaseName} } proxy-type explicit } create HTTP proxy Virtual server tmsh create ltm virtual VS_${HTTPBaseName} { destination ${VS_IP}:${VS_PORT} ip-protocol tcp mask 255.255.255.255 profiles replace-all-with { http_${HTTPBaseName} { } tcp } source 0.0.0.0/0 source-address-translation { type automap } translate-address enabled translate-port enabled} ENABLE SSL FORWARD PROXY This section is not required to forward HTTPS requests but only to enable SSL inspection on HTTPS requests. Note : Following configuration requires SSL, Forward Proxy License. Configure variables used in next commands Variable SSLBaseName is used to create : certificate / key pair : ${SSLBaseName} Client SSL profile : clientssl_${SSLBaseName} Server SSL profile : serverssl_${SSLBaseName} virtual server : VS_${SSLBaseName} SSLBaseName="SSL_FORWARD_PROXY" dirname="/var/tmp" CASubject="/C=FR/O=DEMO\ COMPANY/CN=SSL\ FORWARD\ PROXY\ CA" Create self-signed certificate for CA purpose (not available in WebUI) Self-signed certificates created in WebUI doesn't have CA capability required for SSL FORWARD PROXY. openssl genrsa -out ${dirname}/${SSLBaseName}.key 4094 openssl req -sha512 -new -x509 -days 3650 -key ${dirname}/${SSLBaseName}.key -out ${dirname}/${SSLBaseName}.crt -subj "${CASubject}" Import certificates in TMOS tmsh install sys crypto key ${SSLBaseName}.key from-local-file ${dirname}/${SSLBaseName}.key; tmsh install sys crypto cert ${SSLBaseName}.crt from-local-file ${dirname}/${SSLBaseName}.crt; After CA Certificate is imported, browse in WebUI, retrieve it and import it in client browsers trusted CA Create SSL profiles for SSL FORWARD PROXY tmsh create ltm profile client-ssl clientssl_${SSLBaseName} { cert-lookup-by-ipaddr-port disabled defaults-from clientssl mode enabled proxy-ca-cert ${SSLBaseName}.crt proxy-ca-key ${SSLBaseName}.key ssl-forward-proxy enabled } tmsh create ltm profile server-ssl serverssl_${SSLBaseName} { defaults-from serverssl ssl-forward-proxy enabled } create SSL FORWARD PROXY Virtual server tmsh create ltm virtual VS_${SSLBaseName} { destination 0.0.0.0:https ip-protocol tcp profiles replace-all-with { clientssl_${SSLBaseName} { context clientside } serverssl_${SSLBaseName} { context serverside } http { } tcp { } } source 0.0.0.0/0 translate-address disabled translate-port disabled vlans replace-all-with { http-tunnel } vlans-enabled } Change HTTP EXPLICIT PROXY Default Connect Handling to Deny tmsh modify ltm profile http http_${HTTPBaseName} explicit-proxy { default-connect-handling deny } Note : These commands were tested in both 12.1 and 13.1 versions. Code : No Code11KViews1like24CommentsOffline (Enabled) - The children pool member(s) are down
Hi Friends, I am novice to F5 and following CBT Nuggets to understand LTM in a better way. I have completed basic configuration i.e defined Nodes, defined Pool and assigned Pool Members to my Pool. Now the problem is that I have enabled "http" health monitor and right after I click 'finished' the icon Transitions from 'Blue Square' to 'Rectangle Red' - Offline(Enabled) - The children pool member(s) are down when I hover over the Pool in 'Pool List'. Now this is a very basic setup with 3 .OVA web servers pre configured which I received in my Nuggetlabs. I am able to login to the servers using my browser, telnet 10.2.0.11 80 and curl http://10.2.0.11 commands but the Servers are showing as Offline(Enabled) - Pool member has been marked down by a monitor in 'Members' list. I need your help to proceed further please. Thanks in advance, SagarSolved8.5KViews0likes10CommentsHow to display the whole configuration of a BIG-IP with default value ?
Hi Guys, I'm currently seeking the CLI command or a way to display and get the configuration of a BIGIP with all default values include in the configuration file (bigip.conf). I'm not sure if it's possible with F5. Thanks for your experience. Morgan7.7KViews0likes2CommentsSSL Legacy Renegotiation vs Secure Renegotiation Explained using Wireshark
Related articles: SSL Forward Proxy Explained using Wireshark Quick Intro This is just a quick but in-depth look into SSL/TLS Renegotation and Secure Renegotiation. I'll just quickly show you how legacy and secure negotiation work in TLS/SSL. Renegotiation takes place in the same TCP connection. Do not confuse with Session Resumption/Reuse which takes place in subsequent TCP connections. Here's the topology I used to test this: 1. Legacy Renegotiation First there is a full SSL handshake: Notice that on Frame 6 (Server Hello) BIG-IP offers a Session ID: However, we do not use this session ID in renegotiation. Why? Because renegotiation means we want torenegotiate security parameters again and reusing session ID we would be reusing the same security parameters. Also,renegotiation takes place over the same TCP connection, so if client is the one that starts renegotiation we see a straightClient Hellostill over the same connection aboveand full handshake takes place: If it's BIG-IP (server-side) who is willing to trigger renegotiation then we see aHello Requestmessage still over same TCP connection followed by full handshake: That's it. This is legacy Renegotiation. Note:Do not confuse Renegotiation with Session Reuse/Resumption. In Session Reuse a new TCP connection is open and Client sends a Session ID from a previous session so that same security parameters are reused. 2. Secure Renegotiation - The Add on! Secure renegotiation is exactly the same as above with the addition of SSLrenegotiation_infoextension described inRFC5746. Note:The only reason for this extension is to avoid man-in-the-middle attack where session is hijacked and attacker tries to renegotiate new session using client's handshake information. This extension saves some information from initial handshake that must be provided upon renegotiation which attacker wouldn't have. If we click on first Client Hello we seerenegotiation_infoextension along with other extensions inClient Hellomessage: Note:Instead of renegotiation_info extension there is also the option to add TLS_EMPTY_RENEGOTIATION_INFO_SCSV to Cipher Suites list and that means the same thing, i.e. we (or client/server) support Secure Renegotiation. First message is always blank just to indicate Client supports Secure Renegotiation. Server also signals its support inServer Hello: At the end of every SSL handshake there is aFinishedmessage sent by both Client and BIG-IP: If we click on Finished message from Client, more specifically onVerify Datafield (assuming it is decrypted) we will see a 12 bytes hash in hexadecimal: This client-sidehash(d5 b7 01 35 b3 d2 d7 2a 54 0e 24 f0) is the result of hash of all handshake messages exchanged at this point mixed with previously negotiated master secret and a mathematical function to make it more secure (random). This allows BIG-IP to validate the integrity of the entire handshake. In BIG-IP's Finished message we can also see the sameVerify Datamessage which its own hash which in turn will also allow client to validate the integrity of the entire handshake: But why is it important to know that? Because in the next handshake,renegotiation_info (foundwithinClient Hellosent by Client)containsVerify Dataportion it sent in previousFinishedmessage (from previous handshake). Then BIG-IP sends its hash concatenated with client inVerify Dataportion. Therefore, it is unlikely an attacker could have obtained these values becauseFinishedmessage is always encrypted. Let's confirm values match onrenegotiation_infoon Client Hello sent afterwards in the same TCP connection (frame 1931): On BIG-IP's side it is the concatenation of Client's Verify Data and BIG-IP's Verify data (frame1965): That's it.7.3KViews1like1CommentWorking with MasterKeys
Author : Arnaud Fauvel (Obiane – Orange Group – France) Introduction : As explained in “SOL9420: Installing a UCS file containing an encrypted passphrase”: Passphrases used for configuration items, such as monitors, profiles, and Secure Sockets Layer (SSL) keys, are stored in the configuration file in encrypted format. The BIG-IP system uses a hardware-key encrypted master key to encrypt and decrypt passphrases contained in the configuration file. These hardware-key encrypted passwords can be identified with a prefix of $M$. Prior to BIG-IP 11.5.0, only the passphrases used for SSL private keys are stored in encrypted format. In BIG-IP 11.5.0 and later, passphrases used for other configuration objects, such as monitors and profiles, are also stored in encrypted format. To complete the description, the master key unit is: - Different on each standalone device but shared within a cluster. - Different on each vCMP guest and is dissociated from vCMP host. How to modify MasterKey As explained in the SOL it’s possible to modify the master key of the device with the following command: f5mku -r There are two bad behaviors of this command: - If there are already configuration items with encrypted parameter, the bigip is unable to load the configuration. We have to remove SSL key passphrase encryption as explained in the SOL14302: Replacing a VIPRION chassis that has one or more blades installed. - On a vCMP Host or Guest after executing the command the device become unstable. F5 support provides me the following commands explained in the following “SOL13508: ConfigSync operations fail to complete and generate a validation message”: modify /sys crypto master-key prompt-for-password This command is magic: - A new masterkey is defined based on a provided password - Saving the configuration automatically re-encrypts any encrypted-SSL-key passphrases, using the new master key, prior to saving them in the configuration file. - It works on BIGIP or vCMP guest. Considering the masterkey of the vCMP Host it’s not so simple. The precedent command can be used but all vCMP Guest will be unable to retrieve their master key: notice mcpd[6230]: 01071029:5: Cannot open unit key store notice mcpd[6230]: 01070406:5: Removed publication with publisher id ha_table_publish warning mcpd[6230]: 012a0004:4: halStorageRead: unable to read storage on this platform The masterkey of the vCMP host seems to be used for a unit key store shared with all vCMP Guest. You will find bellow a scheme which tries to represent the master key architecture: How to restore archive configuration without removing SSL key passphrase encryption The “SOL9420: Installing a UCS file containing an encrypted passphrase” is not really satisfactory because as explained before the f5mku -r commands doesn’t work with vCMP guest. But by using the magic commands it’s works very well J. 1. After installing a BIGIP or vCMP Guest, log in on to de device and force the master key with a password by typing the following command: # tmsh # modify /sys crypto master-key prompt-for-password enter password: password again: # save /sys config Saving running configuration... /config/bigip.conf /config/bigip_base.conf /config/bigip_user.conf 2. Save regulary the configuration (using iApp or remote expect script): save /sys ucs passphrase 3. Log in to the RMA BIG-IP system command line. 4. Install the master key with the password you enter in step 1 to the RMA BIG-IP system using the following command syntax: # tmsh # modify /sys crypto master-key prompt-for-password enter password: password again: # save /sys config Saving running configuration... /config/bigip.conf /config/bigip_base.conf /config/bigip_user.conf 5.Restore the UCS file to the RMA BIG-IP system using the following command syntax: tmsh load sys ucs .ucs no-license7.2KViews1like2Comments