nginx plus
48 TopicsHow I did it - “Delivering Kasm Workspaces three ways”
Securing modern, containerized platforms like Kasm Workspaces requires a robust and multi-faceted approach to ensure performance, reliability, and data protection. In this edition of "How I did it" we'll see how F5 technologies can enhance the security and scalability of Kasm Workspaces deployments.85Views0likes0CommentsIntroducing the New Docker Compose Installation Option for F5 NGINX Instance Manager
F5 NGINX Instance Manager (NIM) is a centralised management solution designed to simplify the administration and monitoring of F5 NGINX instances across various environments, including on-premises, cloud, and hybrid infrastructures. It provides a single interface to efficiently oversee multiple NGINX instances, making it particularly useful for organizations using NGINX at scale. We’re excited to introduce a new Docker Compose installation option for NGINX Instance Manager, designed to help you get up and running faster than ever before, in just a couple of steps. Key Features: Quick and Easy Installation: With just a couple of steps, you can pull and deploy NGINX Instance Manager on any Docker host, without having to manually configure multiple components. The image is available in our container registry, so once you have a valid license to access it, getting up and running is as simple as pulling the container. Fault-Tolerant and Resilient: This installation option is designed with fault tolerance in mind. Persistent storage ensures your data is safe even in the event of container restarts or crashes. Additionally, with a separate database container, your product’s data is isolated, adding an extra layer of resilience and making it easier to manage backups and restores. Seamless Upgrades: Upgrades are a breeze. You can update to the latest version of NGINX Instance Manager by simply updating the image tag in your Docker Compose file. This makes it easy to stay up-to-date with the latest features and improvements without worrying about downtime or complex upgrade processes. Backup and Restore Options: To ensure your data is protected, this installation option comes with built-in backup and restore capabilities. Easily back up your data to a safe location and restore it in case of any issues. Environment Configuration Flexibility: The Docker Compose setup allows you to define custom environment variables, giving you full control over configuration settings such as log levels, timeout values, and more. Production-Ready: Designed for scalability and reliability, this installation method is ready for production environments. With proper resource allocation and tuning, you can deploy NGINX Instance Manager to handle heavy workloads while maintaining performance. The following steps walk you through how to deploy and manage NGINX Instance Manager using Docker Compose. What you need A working version ofDocker Your NGINX subscription’s JSON Web Token from MyF5 This pre-configureddocker-compose.yamlfile: Download docker-compose.yaml file. Step 1 - Set up Docker for NGINX container registry Log in to the Docker registry using the contents of the JSON Web Token file you downloaded fromMyF5 : docker login private-registry.nginx.com --username=<JWT_CONTENTS> --password=none Step 2 - Run “docker login” and then “docker compose up” in the directory where you downloaded docker-compose.yaml Note: You can optionally set the Administrator password for NGINX Instance Manager prior to running Docker Compose. ~$ docker login private-registry.nginx.com --username=<JWT_CONTENTS> --password=none ~$ echo "admin" > admin_password.txt ~$ docker compose up -d [+] Running 6/6 ✔ Network nim_clickhouse Created 0.1s ✔ Network nim_external_network Created 0.2s ✔ Network nim_default Created 0.2s ✔ Container nim-precheck-1 Started 0.8s ✔ Container nim-clickhouse-1 Healthy 6.7s ✔ Container nim-nim-1 Started 7.4s. Step 3 – Access NGINX Instance Manager Go to the NGINX Instance Manager UI on https://<<DOCKER_HOST>>:443 and license the product using the same JSON Web Token you downloaded from MyF5 earlier. Conclusion With this new setup, you can install and run NGINX Instance Manager on any Docker host in just 3 steps, dramatically reducing setup time and simplifying deployment. Whether you are working in a development environment or deploying to production, the Docker Compose-based solution ensures a seamless and reliable experience. For more information on using the docker compose option with NGINX Instance manager such as running a backup and restore, using secrets, and many more, please see the instructionshere.36Views1like0CommentsHow I did it - "Securing NVIDIA’s Morpheus AI Framework with NGINX Plus Ingress Controller”
In this installment of "How I Did It," we continue our journey into AI security. I have documented how I deployed an NVIDIA Morpheus AI infrastructure along with F5's NGINX Plus Ingress Controller to provide secure and scalable external access.196Views2likes1CommentGitOps: Declarative Infrastructure and Application Delivery with NGINX App Protect
First thing first. What is GitOps? In a nutshell, GitOps is a practice (Git Operation) that allows you to use GIT and code repository as your configuration source of truth (Declarative Infrastructure as Code and Application Delivery as Code) couple with various supporting tools. The state of your git repository syncs with your infrastructure and application states. As operation team runs daily operations (CRUD - "Create, Read, Update and Delete") leveraging the goodness and philosophy of DevOps, they no longer required to store configuration manifest onto various configuration systems. THe Git repo will be the source of truth. Typically, the target systems or infrastructures runs on Kubernetes base platform. For further details and better explanation of GitOps, please refer to below or Google search. https://codefresh.io/learn/gitops/ https://www.atlassian.com/git/tutorials/gitops Why practice GitOps? I havebeen managing my lab environment for many years. I use my lab for research of technologies, customer demos/Proof-of-Concepts, applications testing, and code development. Due to the nature of constant changes to my environment (agile and dynamic nature), especially with my multiple versions of Kubernetes platform, I have been spending too much time updating, changing, building, deploying and testing various cloud native apps. Commands like docker build, kubectl, istioctl and git have been constantly and repetitively used to operate environments. Hence, I practice GitOps for my Kubernetes infrastructure. Of course, task/operation can be automated and orchestrated with tools such as Ansible, Terraform, Chef and Puppet. You may not necessarily need GitOps to achieve similar outcome. I managed with GitOps practice partly to learn the new "language" and toexperience first-hand the full benefit of GitOps. Here are some of my learnings and operations experience that I have been using to manage F5's NGINX App Protect and many demo apps protected by it,which may benefit you and give you some insight on how you can run your own GitOps. You may leverage your own GitOps workflow from here. For details and description on F5's NGINX App Protect, please refer to https://www.nginx.com/products/nginx-app-protect/ Key architecture decision of my GitOps Workflow. Modular architecture - allows me to swap in/out technologies without rework. "Lego block" Must reduce my operational works - saves time, no repetitive task, write once and deploy many. Centralize all my configuration manifest - single source of truth. Currently, my configuration exists everywhere - jump hosts, local laptop, cloud storage and etc. I had lost track of which configuration was the latest. Must be simple, modern, easy to understand and as native as possible. Use Case and desirable outcome Build and keep up to date NGINX Plus Ingress Controller with NGINX App Protect in my Kubernetes environment. Build and keep up to date NGINX App Protect's attack signature and Threat Champaign signature. Zero downtime/impact to apps protected by NGINX App Protect with frequent releases, update and patch cycle for NGINX App Protect. My Problem Statement I need to ensure that my infrastructure (Kubernetes Ingress controller) and web application firewall (NGINX App Protect) is kept up to date with ease. For example, when there are new NGINX-ingress and NGINX App Protect updates (e.g., new version, attack signature and threat campaign signature), I would like to seamlessly push changes out to NGINX-ingress and NGINX App Protect (as it protects my backend apps) without impacting applications protected by NGINX App Protect. GitOps Workflow Start small, start with clear workflow. Below is a depiction of the overall GitOps workflow. NGINX App Protect is the target application. Hence, before description of the full GitOps Workflow, let us understand deployment options for NGINX App Protect. NGINX App Protect Deployment model There are four deployment models for NGINX App Protect. A common deployment models are: Edge - external load balancer and proxies (Global enforcement) Dynamic module inside Ingress Controller (per service/URI/ingress resource enforcement) Per-Service Proxy model - Kubernetes service tier (per service enforcement) Per-pod Proxy model - proxy embedded in pod (per endpoint enforcement) Pipeline demonstrated in this article will workwith either NGINX App Protect deployed as Ingress Controller (2) or per-service proxy model (3). For the purposes of this article, NGINX App Protect is deployed at the Ingress controller at the entry point to Kubernetes (Kubernetes Edge Proxy). For those who prefer video, Video Demonstration Part 1 /3 – GitOps with NGINX Plus Ingress and NGINX App Protect - Overview Part 2 /3 – GitOps with NGINX Plus Ingress and NGINX App Protect – Demo in Action Part 3/3 - GitOps with NGINX Plus Ingress and NGINX App Protect - WAF Security Policy Management. Description of GitOps workflow Operation (myself) updates nginx-ingress + NAP image repo (e.g. .gitlab-ci.yml in nginx-plus-ingress) via VSCODE and perform code merge and commit changes to repo stored in Gitlab. Gitlab CI/CD pipeline triggered. Build, test and deploy job started. Git clone kubernetes-ingress repo from https://github.com/nginxinc/kubernetes-ingress/. Checkout latest kubernetes-ingress version and build new image with DockerfilewithAppProtectForPlus dockerfile. [ Ensure you have appropriate nginx app protect license in place ] As part of the build process, it triggers trivy container security scanning for vulnerabilities (Open Source version of AquaSec). Upon completion of static binary scanning, pipeline upload scanned report back to repo for continuous security improvement. Pipeline pushesimage to private repository. Private image repo has been configured to perform nightly container security scan (Clair Scanner). Leverage multiple scanning tools - check and balance. Pipeline clone nginx-ingress deployment repo (my-kubernetes-apps) and update nginx-ingress deployment manifest with the latest build image tag (refer excerpt of the manifest below). Gitlab triggers a webhook to ArgoCD to refresh/sync the desire application state on ArgoCD with deployment state in Kubernetes. By default, ArgoCD will sync with Kubernetes every 3 mins. Webhook will trigger instance sync. ArgoCD (deployed on independent K3S cluster) fetches new code from the repo and detects code changes. ArgoCD automates the deployment of the desired application states in the specified target environment. It tracks updates to git branches, tags or pinned to a specific version of manifest at a git commit. Kubernetes triggers an image pull from private repo, performs a rolling updates, and ensures zero interruption to existing traffic. New pods (nginx-ingress) will spin up and traffic will move to new pods before terminating theold pod. Depending on environment and organisation maturity, a successful build, test and deployment onto DEV environment can be pushed to production environment. Note: DAST Scanning (ZAP Scanner) is not shown in this demo. Currently, running offline non-automated scanning. ArgoCD and Gitlab are integrated with Slack notifications. Events are reported into Slack channel via webhook. NGINX App Protectevents are send to ELK stack for visibility and analytics. Snippet on where Gitlab CI update nginx-plus-ingress deployment manifest (Flow#6). Each new image build will be tagged with <branch>-hash-<version> ... spec: imagePullSecrets: - name: regcred serviceAccountName: nginx-ingress containers: - image: reg.foobz.com.au/apps/nginx-plus-ingress:master-f660306d-1.9.1 imagePullPolicy: IfNotPresent name: nginx-plus-ingress ... Gitlab CI/CD Pipeline Successful run of CI/CD pipeline to build, test, scan and push container image to private repository and execute code commit onto nginx-plus-ingress repo. Note: Trivy scanning report will be uploaded or committed back to the same repo. To prevent Gitlab CI triggering another build process ("pipeline loop"), the code commit is tagged with [skip ci]. ArgoCD continuous deployment ArgoCD constantly (default every 3 mins) syncs desired application state with my Kubernetes cluster. Its ensures configuration manifest stored in Git repository is always synchronised with the target environment. Mytrain-dev apps are protected by nginx-ingress + NGINX App Protect. Specific (per service/URI enforcement). NGINX App Protect policy is applied onto this service. nginx-ingress + NGINX App Protect is deployed as an Ingress Controller in Kubernetes. pod-template-hash=xxxx is labeled and tracked by ArgoCD. $ kubectl -n nginx-ingress get pod --show-labels NAME READY STATUS RESTARTS AGE LABELS nginx-ingress-776b64dc89-pdtv7 1/1 Running 0 8h app=nginx-ingress,pod-template-hash=776b64dc89 nginx-ingress-776b64dc89-rwk8w 1/1 Running 0 8h app=nginx-ingress,pod-template-hash=776b64dc89 Please refer to the attached video links above for full demo in actions. References Tools involved NGINX Plus Ingress Controller - https://www.nginx.com/products/nginx-ingress-controller/ NGINX App Protect - https://www.nginx.com/products/nginx-app-protect/ Gitlab - https://gitlab.com Trivy Scanner - https://github.com/aquasecurity/trivy ArgoCD - https://argoproj.github.io/argo-cd/ Harbor Private Repository - https://goharbor.io/ Clair Scanner - https://github.com/quay/clair Slack - https://slack.com DAST Scanner - https://www.zaproxy.org/ Elasticsearch, Logstash and Kibana (ELK) - https://www.elastic.co/what-is/elk-stack, https://github.com/464d41/f5-waf-elk-dashboards K3S - https://k3s.io/ Source repo used for this demonstration Repo for building nginx-ingress + NGINX App Protect image repo https://github.com/fbchan/nginx-plus-ingress.git Repo use for deployment manifest of nginx-ingress controller with the NGINX App Protect policy. https://github.com/fbchan/my-kubernetes-apps.git Summary GitOps perhaps is a new buzzword. It may or may not make sense in your environment. It definitely makes sense for me. It integrated well with NGINX App Protect and allows me to constantly update and push new code changesinto my environment with ease. A few months down the road, when I need to update nginx-ingress and NGINX App Protect, I just need to trigger a CI job, and then everything works like magic. Your mileage may vary. Experience leads me to think along the line of - start small, start simple by "GitOps-ing" on one of your apps that may require frequency changes. Learn, revise and continuously improve from there. The outcome that GitOps provides will ease your operational burden with "do more with less". Ease of integration of nginx-ingress and NGINX App Protect into your declarative infrastructure and application delivery with GitOps and F5's industry leading Web Application firewall protection will definitely alleviate your organisation's risk exposure to external and internal applications threat.1.8KViews1like3CommentsF5 NGINX Plus R33 Licensing and Usage Reporting
Beginning with F5 NGINX Plus version R33, all customers are required to deploy a JSON Web Token (JWT) license for each commercial instance of NGINX Plus. Each instance is responsible for validating its own license status. Furthermore, NGINX Plus will report usage either to the F5 NGINX licensing endpoint or to the F5 NGINX Instance Manager for customers who are connected. For those customers who are disconnected or operate in an air-gapped environment, usage can be reported directly to the F5 NGINX Instance Manager. To learn more about the latest features of NGINX R33, please check out the recent blog post. Install or Upgrade NGINX Plus R33 To successfully upgrade to NGINX Plus R33 or perform a fresh installation, begin by downloading the JWT license from your F5 account. Once you have the license, place it in the F5 NGINX directory before proceeding with the upgrade. For a fresh installation, after completing the installation, also place the JWT license in the NGINX directory. For further details, please refer to the provided instructions. This video provides a step-by-step guide on installing or upgrading to NGINX Plus R33. Report Usage to F5 in Connected Environment To effectively report usage data to F5 within a connected environment using NGINX Instance Manager, it's important to ensure that port 443 is open. The default configuration directs the usage endpoint to send reports directly to the F5 licensing endpoint at product.connect.nginx.com. By default, usage reporting is enabled, and it's crucial to successfully send at least one report on installation for NGINX to process traffic. However, you can postpone the initial reporting requirement by turning off the directive in your NGINX configuration. This allows NGINX Plus to handle traffic without immediate reporting during a designated grace period. To configure usage reporting to F5 using NGINX Instance Manager, update the usage endpoint to reflect the fully qualified domain name (FQDN) of the NGINX Instance Manager. For further details, please refer to the provided instructions. This video shows how to report usage in the connected environment using NGINX Instance Manager. Report Usage to F5 in Disconnected Environment using NGINX Instance Manager In a disconnected environment without an internet connection, you need to take certain steps before submitting usage data to F5. First, in NGINX Plus R33, update the `usage report` directive within the management block of your NGINX configuration to point to your NGINX Instance Manager host. Ensure that your NGINX R33 instances can access the NGINX Instance Manager by setting up the necessary DNS entries. Next, in the NMS configuration in NGINX Instance Manager, modify the ‘mode of operation’ to disconnected, save the file, and restart NGINX Instance Manager. There are multiple methods available for adding a license and submitting the initial usage report in this disconnected environment. You can use a Bash script, REST API, or the web interface. For detailed instructions on each method, please refer to the documentation. This video shows how to report usage in disconnected environments using NGINX Instance Manager. Conclusion The transition to NGINX Plus R33 introduces important enhancements in licensing and usage reporting that can greatly improve your management of NGINX instances. With the implementation of JSON Web Tokens (JWT), you can validate your subscription and report telemetry data more effectively. To ensure compliance and optimize performance, it’s crucial to understand the best practices for usage reporting, regardless of whether you are operating in a connected or disconnected environment. Get started today with a 30-day trial, and contact us if you have any questions. Resources NGINX support documentation Blog announcementproviding a comprehensive summary of the new features in this release.203Views2likes1CommentF5 NGINX Plus R33 Release Now Available
We’re excited to announce the availability of NGINX Plus Release 33 (R33). The release introduces major changes to NGINX licensing, support for post quantum cryptography, initial support for QuickJS runtime in NGINX JavaScript and a lot more.736Views1like0CommentsUpcoming Action Required: F5 NGINX Plus R33 Release and Licensing Update
Hello community! The upcoming release of NGINX Plus R33 is scheduled for this quarter. This release brings changes to our licensing process, aligning it with industry best practices and the rest of the F5 licensing programs. These updates are designed to better serve our commercial customers by providing improved visibility into usage, streamlined license tracking, and enhanced customer service. Key Changes in NGINX Plus R33 Release: Q4, 2024 New Requirement: All commercial NGINX Plus instances will now require the placement of a JSON Web Token (JWT). This JWT file can be downloaded from your MyF5 account. License Validation: NGINX Plus instances will regularly validate their license status with the F5 licensing endpoint for connected customers. Offline environments can manage this through the NGINX Instance Manager. Usage Reporting: NGINX Plus R33 introduces a new requirement for commercial product usage reporting. NGINX's adoption of F5's standardized approach ensures easier and more precise license and usage tracking. Once our customers are utilizing R33 together with NGINX’s management options, tasks such as usage reporting and renewals will be much more streamlined and straightforward. Additionally, NGINX instance visibility and management will be much easier. Action Required To ensure a smooth transition and uninterrupted service, please take the following steps: Install the JWT: Make sure to install the JWT on all your commercial NGINX Plus instances. This is crucial to avoid any interruptions. Additional Steps: Refer to our detailed guide for any other necessary steps.See here for additional required next steps. IMPORTANT: Failure to followthese steps will result in NGINX Plus R33 and subsequent release instances not functioning. Critical Notes JWT Requirement: JWT files are essential for the startup of NGINX Plus R33. NGINX Ingress Controller: Users of NGINX Ingress Controller should not upgrade to NGINX Plus R33 until the next version of the Ingress Controller is released. No Changes for Earlier Versions: If you are using a version of NGINX Plus prior to R33, no action is required. Resources We are preparing a range of resources to help you through this transition: Support Documentation: Comprehensive support documentation will be available upon the release of NGINX Plus R33. Demonstration Videos: We will also provide demonstration videos to guide you through the new processes upon the release of NGINX Plus R33. NGINX Documentation: For more detailed information, visit our NGINX documentation. Need Assistance? If you have any questions or concerns, please do not hesitate to reach out: F5 Representative: Contact your dedicated representative for personalized support. MyF5 Account: Support is readily available through your MyF5 account. Stay tuned for more updates. Thank you for your continued partnership.1KViews1like0CommentsIssue with worker_connections limits in Nginx+
Hello Nginx Community, We are using Nginx+ for our Load Balancer and have encountered a problem where the current worker_connections limit is insufficient. I need our monitoring system to check the current value of worker_connections for each Nginx worker process to ensure that the active worker_connections are below the maximum allowed. The main issue is that I cannot determine the current number of connections for each Nginx worker process. In my test configuration, I set worker_connections to 28 (which is a small value used only for easily reproducing the issue). With 32 worker processes, the total capacity should be 32 * 28 = 896 connections. Using the /api/9/connections endpoint, we can see the total number of active connections: { "accepted": 2062055, "dropped": 4568, "active": 9, "idle": 28 } Despite the relatively low number of active connections, the log file continually reports that worker_connections are insufficient. Additionally, as of Nginx+ R30, there is an endpoint providing per-worker connection statistics (accepted, dropped, active, and idle connections, total and current requests). However, the reported values for active connections are much lower than 28: $ curl -s http://<some_ip>/api/9/workers | jq | grep active "active": 2, "active": 0, "active": 1, "active": 2, "active": 1, "active": 1, "active": 0, "active": 0, "active": 3, "active": 0, "active": 0, "active": 0, "active": 2, "active": 2, "active": 0, "active": 1, "active": 0, "active": 0, "active": 0, "active": 0, "active": 0, "active": 0, "active": 0, "active": 2, "active": 1, "active": 2, "active": 1, "active": 0, "active": 1, "active": 0, "active": 0, "active": 1, Could you please help us understand why the active connections are reported as lower than the limit, yet we receive logs indicating that worker_connections are not enough? Thank you for your assistance.114Views1like5CommentsNGINX Virtual Machine Building with cloud-init
Traditionally, building new servers was a manual process. A system administrator had a run book with all the steps required and would perform each task one by one. If the admin had multiple servers to build the same steps were repeated over and over. All public cloud compute platforms provide an automation tool called cloud-init that makes it easy to automate configuration tasks while a new VM instance is being launched. In this article, you will learn how to automate the process of building out a new NGINX Plus server usingcloud-init.538Views3likes4Comments