management
1087 TopicsHow I did it - "F5 BIG-IP Observability with Dynatrace and F5 Telemetry Streaming"
Welcome back to another edition of “How I Did It.” It’s been a while since we looked at observability… Oh wait, I just said that. Anyway, in this post I’ll walk through how I integrated F5 Telemetry Streaming with Dynatrace. To show the results, I’ve included sample dashboards that highlight how the ingested telemetry data can be visualized effectively. Let’s dive in before I repeat myself again.486Views4likes0CommentsWhat’s New in BIG-IQ v8.4.1?
Introduction F5 BIG-IQ Centralized Management, a key component of the F5 Application Delivery and Security Platform (ADSP), helps teams maintain order and streamline administration of BIG-IP app delivery and security services. In this article, I’ll highlight some of the key features, enhancements, and use cases introduced in the BIG-IQ v8.4.1 release and cover the value of these updates. Effective management of this complex application landscape requires a single point of control that combines visibility, simplified management and automation tools. Demo Video New Features in BIG-IQ 8.4.1 Support for F5 BIG-IP v17.5.1.X and BIG-IP v21.0 BIG-IQ 8.4.1 provides full support for the latest versions of BIG-IP (BIG-IP 17.5.1.X and 21.0) ensuring seamless discovery and compatibility across all modules. Users who upgrade to BIG-IP 17.5.1.X+ or 21.0 retain the same functionality without disruptions, maintaining consistency in their management operations. As you look to upgrade BIG-IP instances to the latest versions, our recommendation is to use BIG-IQ. By leveraging the BIG-IQ device/software upgrade workflows, teams get a repeatable, standardized, and auditable process for upgrades in a single location. In addition to upgrades, BIG-IQ also enables teams to handle backups, licensing, and device certificate workflows in the same tool—creating a one-stop shop for BIG-IP device management. Note that BIG-IQ works with BIG-IP appliances and Virtual Editions (VEs). Updated TMOS Layer In the 8.4.1 release, BIG-IQ's underlying TMOS version has been upgraded to v17.5.1.2, which will enhance the control plane performance, improve security efficacy, and enable better resilience of the BIG-IQ solution. MCP Support BIG-IP v21.0 introduced MCP Profile support—enabling teams to support AI/LLM workloads with BIG-IP to drive better performance and security. Additionally, v21.0 also introduces support for S3-optimized profiles, enhancing the performance of data delivery for AI workloads. BIG-IQ 8.4.1 and its interoperability with v21.0 helps teams streamline and scale management of these BIG-IP instances—enabling them to support AI adoption plans and ensure fast and secure data delivery. Enhanced BIG-IP and F5OS Visibility and Management BIG-IQ 8.4.1 introduces the ability to provision, license, configure, deploy, and manage the latest BIG-IP devices and app services (v17.5.1.X and v21.0). In 8.4, BIG-IQ introduced new visibility fields—including model, serial numbers, count, slot tenancy, and SW version—to help teams effectively plan device strategy from a single source of truth. These enhancements also improved license visibility and management workflows, including exportable reports. BIG-IQ 8.4.1 continues to offer this enhanced visibility and management experience for the latest BIG-IP versions. Better Security Administration BIG-IQ 8.4.1 includes general support for SSL Orchestrator 13.0 to help teams manage encrypted traffic and potential threats. BIG-IQ includes dedicated dashboards and management workflows for SSL Orchestrator. In BIG-IQ 8.4, F5 introduced support and management for Venafi Trust Protection Platform v22.x-24.x, a leading platform for certificate management and certificate authority services. This integration enables teams to automate and centrally manage BIG-IP SSL device certificates and keys. BIG-IQ 8.4.1 continues this support. Finally, BIG-IQ 8.4.1 continues to align with AWS security protocols so customers can confidently partner with F5. In BIG-IQ 8.4, F5 introduced support for IMDSv2, which uses session-oriented authentication to access EC2 instance metadata, as opposed to the request/response method of IMDSv1. This session/token-based method is more secure as it reduces the likelihood of attackers successfully using application vulnerabilities to access instance metadata. Enhanced Automation Integration & Protocol Support BIG-IQ 8.4.1 continues with BIG-IQ's support for the latest version of AS3 and templates (v3.55+). By supporting the latest Automation Toolchain (AS3/DO) BIG-IQ is aligned with current BIG‑IP APIs and schemas, enabling reliable, repeatable app and device provisioning. It reduces deployment failures from version mismatches, improves security via updated components, and speeds operations through standardized, CI/CD-friendly automation at scale. BIG-IQ 8.4 (and 8.4.1) provides support for IPv6. IPv6 provides vastly more IP addresses, simpler routing, and end‑to‑end connectivity as IPv4 runs out. BIG‑IQ’s IPv6 profile support centralizes configuration, visibility, and policy management for IPv6 traffic across BIG‑IP devices—reducing errors and operational overhead while enabling consistent, secure IPv6 adoption. Upgrading to v8.4.1 You can upgrade from BIG-IQ 8.X to BIG-IQ 8.4.1. BIG-IQ Centralized Management Compatibility Matrix Refer to Knowledge Article K34133507 BIG-IQ Virtual Edition Supported Platforms BIG-IQ Virtual Edition Supported Platforms provides a matrix describing the compatibility between the BIG-IQ VE versions and the supported hypervisors and platforms. Conclusion Effective management—orchestration, visibility, and compliance—relies on consistent app services and security policies across on-premises and cloud deployments. Easily control all your BIG-IP devices and services with a single, unified management platform, F5® BIG-IQ®. F5® BIG-IQ® Centralized Management reduces complexity and administrative burden by providing a single platform to create, configure, provision, deploy, upgrade, and manage F5® BIG-IP® security and application delivery services. Related Content Boosting BIG-IP AFM Efficiency with BIG-IQ: Technical Use Cases and Integration Guide Five Key Benefits of Centralized Management F5 BIG-IQ What's New in v8.4.0?
92Views3likes0CommentsCertificate Automation for BIG-IP using CyberArk Certificate Manager, Self-Hosted
The issue of reduced lifetimes of TLS certificates is top of mind today. This topic touches upon reducing the risks associated with human day-to-day management tasks for such critical components of secure enterprise communications. Allowing a TLS certificate to expire, by simple operator error often, can preclude the bulk of human or automated transactions from ever completing. In the context of e-commerce, as only one single example, such an outage could be financially devastating. Questions abound: why are certificate lifetimes being lowered; how imminent is this change; will it affect all certificates? An industry association composed of interested parties, including many certificate authority (CA) operators, is the CA/Browser Forum. In a 29-0 vote in 2025, it was agreed public TLS certificates should rapidly evolve from the current 398 day de-facto lifetime standard to a phased arrival at a 47 day limit by March 2029. An ancillary requirement, demonstrating the domain is properly owned, known as Domain Control Validation (DCV) will drop to ten days. Although the governance of certificate lifecycles overtly pertains to public certificates, the reality is enterprise-managed, so called private CAs, likely need to fall in lock step with these requirements. Pervasive client-side software elements, such as Google Chrome, are used transparently by users with certificates that may be public or enterprise issued, and having a single set of criteria for accepting or rejecting a certificate is reasonable. Why Automated Certificate Management on BIG-IP, Now More than Ever? A principal driver for shortening certificate (cert) lifetimes; the first phase will reduce public certs to 200-day durations this coming March 15, 2026, is simply to lessen the exposure window should the cert be compromised and mis-used by an adversary. Certificates, and their corresponding private keys, can be manually maintained using human-touch. The BIG-IP TMUI interface has a click-ops path for tying certificates and keys to SSL profiles, for virtual servers that project HTTPS web sites and services to consumers. However, this requires something valuable, head count, and diligence to ensure a certificate is refreshed, perhaps through an enterprise CA solution like Microsoft Certificate Authority. It is critical this is done, always and without fail, well in advance of expiry. An automated solution that can take a “set it and forget it” approach to maintain both initial certificate deployment and the critical task of timely renewals is now more beneficial than ever. Lab Testing to Validate BIG-IP with CyberArk Trusted Protection Platform (TPP) A test bed was created that involved, at first, a BIG-IP in front of an HTTP/HTTPS server fleet, a Windows 2019 domain controller and a Windows 10 client to test BIG-IP virtual servers with. Microsoft Certificate Authority was installed on the server to allow for the issuance of enterprise certs for any of the HTTPS virtual servers created on the BIG-IP. Here is the lab layout, where virtual machines were leveraged to create the elements, including BIG-IP virtual edition (VE). The lab is straight forward; upon the Windows 2019 domain controller the Microsoft Certificate Authority component was installed. Microsoft SQL server 2019 was also installed, along with SQL Management Studio. In an enterprise production environment, these components would likely never share the domain controller host platform but are fine for this lab setup. Without an offering to shield the complexity and various manual processes of key and cert management, an operator will need to be well-versed with an enterprise CA solution like Microsoft’s. A typical launching sequence from Server Manager is shown below, with the sample lab CA and a representative list of issued certificates with various end dates. Unequipped with a solution like that from CyberArk, a typical workflow might be to install the web interface, in addition to the Microsoft CA and generate web server certificates for each virtual server (also frequently called “each application”) configured on the BIG-IP. A frequent approach is to create a unique web server template in Microsoft CA, with all certificates generated manually following the fixed, user specified certificate lifetime. As seen below, we are not installing anything but the core server role of Certificate Authority, the web interface for requesting certificates is not required and is not installed as a role. CyberArk Certificate Manager, Self-Hosted – Three High-Value Use Cases The self-hosted certificate and key management solution from CyberArk is a mature, tested offering having gained a significant user base and still may be known by previous names such as Venafi TLS Protect, or Venafi Trust Protection Platform (TPP). CyberArk acquired Venafi in 2024. Three objectives were sought in the course of the succinct proof-of-concept lab exercise that represented expected use cases: 1. Discover all existing BIG-IP virtual server TLS certificates 2. Renew certificates and change self-signed instances to enterprise PKI-issued certificates 3. Create completely new certificates and private keys and assign to BIG-IP new virtual servers The following diagram reflects the addition of CyberArk Certificate Manager, or Venafi TPP if you have long-term experience with the solution, to the Windows Server 2019 instance. Use Case One – Discover all BIG-IP Existing Certificates Already Deployed In our lab solution, to re-iterate the pivotal role of CyberArk Certificate Manager (Venafi TPP) in certificate issuance, we have created a “PolicyTree” policy called “TestingCertificates”. This will be where we will discover all of our BIG-IP virtual servers and their corresponding SSL Client and SSL server profiles. An SSL Client profile, for example, dictates how TLS will behave when a client first attempts a secure connection, including the certificate, potentially a certificate chain if signage was performed with an intermediate CA, and protocol specific features like support for TLS 1.3 and PQC NIST FIPS 203 support. Here are the original contents of the TestingCertificates folder, before running an updated discovery, notice how both F5 virtual servers (VS) are listed and the certificates used by a given VS. This is an example of the traditional CyberArk GUI look and feel. A simple workflow exists within the CyberArk platform to visually set up a virtual server and certificate discovery job, it can be run manually once, when needed, or set to operate on a regular schedule. This screenshot shows the fields required for the discovery job, and also provides an example of the evolved, streamlined approach to the user interface, referred to as the newer “Aperture” style view. Besides the enormous time savings of the first-time discovery of BIG-IP virtual servers, and certificates and keys they use in the form of SSL profiles, we can also look for new applications stood up on the BIG-IP through on-going CyberArk discovery runs. In the above example, we see a new web service implemented at the FQDN of www.twotitans.com has just been discovered. Clicking the certificate, one thing to note is the certificate is self-signed. In real enterprise environments, there may be a need to re-issue such a certificate with the enterprise CA, as part of a solid security posture. Another, even more impactful use case is when all enterprise certificates need to be easily and quickly switched from a legacy CA to a new CA the enterprise wants to move to quickly and painlessly. We see with one click on a certificate discovered that some key information is imparted. On this one screen, an operator might note that this particular certificate may warrant some improvements. It is seen that only 2048 bits are used in the certificate; the key is not making use of advanced storage and on, such as a NetHSM, and the certificate itself has not been built to support revocation mechanisms such as Content Revocation Lists (CRLs) or Online Certificate Status Protocol (OCSP). Use Case Two - Renew Certificates and Change Self-signed Instance to Enterprise PKI-Issued Certificates The automated approach of a solution like CyberArk’s likely means manual interactive certificate renewal is not going to be prevalent. However, for the purpose of our demonstration, we can examine a current certificate, alive and active on a BIG-IP supporting the application, s3.example.com. This is the “before” situation (double-click image for higher resolution). The result upon clicking the “Renew Now” button is a new policy-specific updated 12-month lifetime will be applied to a newly minted certificate. As seen in the following diagram, the certificate and its corresponding private key are automatically installed on the SSL Client Profile on the BIG-IP that houses the certificate. The s3.example.com application seamlessly continues to operate, albeit with a refreshed certificate. A tactical usage of this automatic certificate renewal and touchless installation is grabbing any virtual servers running with self-signed certificates and updating these certificates to be signed by the enterprise PKI CA or intermediate CA. Another toolkit feature now available is to switch out the entire enterprise PKI from one CA to another CA, quickly. In our lab setup, we have a Microsoft CA configured; it is named “vlab-SERVERDC1-ca”. The following certificate, ingested through discovery by CyberArk from the BIG-IP, is self-signed. Such certificates can be created directly within the BIG-IP TMUI GUI, although frequently they are quickly generated with the OpenSSL utility. Being self-signed, traffic through into this virtual will typically cause browser security risk pop-ups. They may be clicked through by users in many cases, or the certificate may even be downloaded from the browser and installed in the client’s certificate store to get around a perceived annoyance. This, however, can be troublesome in more locked-down enterprise environments where an Active Directory group policy object (GPO) can be pushed to domain clients, precluding any self-signed certificates being resolved with a few clicks around a pop-up. It is more secure and more robust to have authorized web services, vetted, and then incorporated into the enterprise PKI environment. This is the net result of using CyberArk Certificate Manager, coupled with something like the Microsoft enterprise CA, to re-issue the certificate (double-click). Use Case Three - Create Completely New Certificates and Private Keys and Assign to BIG-IP New Virtual Servers Through the CyberArk GUI, the workflows to create new certificates are intuitive. Per the following image, right-click on a policy and follow the “+Add” menu. We will add a server certificate and store it on the BIG-IP certificate and key list for future usage. A basic set of steps that were followed: Through the BIG-IP GUI, setup the application on the BIG-IP as per a normal configuration, including the origin pool, the client SSL profile, and a virtual server on port 443 that ties these elements together. Create, on CyberArk, the server certificate with the details congruent with the virtual server, such as common name, subject alternate name list, key length desired. On CyberArk, create a virtual server entry that binds the certificate just created to the values defined on the BIG-IP. The last step will look like this. Once the certificate is selected for “Renewal” the necessary elements will automatically be downloaded to the BIG-IP. As seen, the client’s SSL profile has now been updated with the new certificate and key signed by the enterprise CA. Summary This article demonstrated an approach to TLS certificate and key management for applications of all types, which harnesses the F5 BIG-IP for both secure and scalable delivery. With the rise in the number of applications that require TLS security, including advanced features enabled by BIG-IP, like TLS1.3 and PQC, coupled with the industry’s movement towards very short certificate lifecycle, the automation discussed will become indispensable to many organizations. The ability to both discover existing applications, switch out entire enterprise PKI offerings smoothly, and to agilely create new BIG-IP centered applications was touched upon.190Views3likes0CommentsFine-Tuning F5 NGINX WAF Policy with Policy Lifecycle Manager and Security Dashboard
Introduction Traditional WAF management often relies on manual, error-prone editing of JSON or configuration files, resulting in inconsistent security policies across distributed applications. F5 NGINX One Console and NGINX Instance Manager address this by providing intuitive Graphical User Interfaces (GUIs) that replace complex text editors with visual controls. This visual approach empowers SecOps teams to manage security at all three distinct levels precisely: Broad Protection: Rapidly enabling or disabling entire signature sets to cover fast but broad categories of attacks. Targeted Tuning: Fine-tuning security by enabling or disabling signatures for a specific attack type. Granular Control: Defining precise actions for specific user-defined URLs, cookies, or parameters, ensuring that security does not break legitimate application functionality. Centralized Policy Management (F5 NGINX One Console) This video illustrates the shift from manually managing isolated NGINX WAF configurations to a unified, automated approach. With NGINX One Console, you can establish a robust "Golden Policy" and enforce it consistently across development, staging, and production environments from a single SaaS interface. The platform simplifies complex security tasks through a visual JSON editor that makes advanced protection accessible to the entire team, not just deep experts. It also prioritizes operational safety; the "Diff View" allows you to validate changes against the active configuration side-by-side before going live. This enables a smooth workflow where policies are tested in "Transparent Mode" and seamlessly toggled to "Blocking Mode" once validated, ensuring security measures never slow down your release cycles. Operational Visibility & Tuning (F5 NGINX Instance Manager) This video highlights how NGINX Instance Manager transforms troubleshooting from a tedious log-hunting exercise into a rapid, visual investigation. When a user is blocked, support teams can simply paste a Support ID into the dashboard to instantly locate the exact log entry, eliminating the need to grep through text files on individual servers. The console’s new features allow for surgical precision rather than blunt force; instead of turning off entire security signatures, you can create granular exceptions for specific patterns—like a semicolon in a URL—while keeping the rest of your security wall intact. Combined with visual dashboards that track threat campaigns and signature status, this tool drastically reduces Mean-Time-To-Resolution (MTTR) and ensures security controls don’t degrade the application experience. Conclusion The F5 NGINX One Console and F5 NGINX Instance Manager go beyond simplifying workflows—they unlock the full potential of your security stack. With a clear, visual interface, they enable you to manage and resolve the entire range of WAF capabilities easily. These tools make advanced security manageable by allowing you to create and fine-tune policies with precision, whether adjusting broad signature sets or defining rules for specific URLs and parameters. By streamlining these tasks, they enable you to handle complex operations that were once roadblocks, providing a smooth, effective way to keep your applications secure. Resources Devcentral Article: https://community.f5.com/kb/technicalarticles/introducing-f5-waf-for-nginx-with-intuitive-gui-in-nginx-one-console-and-nginx-i/343836 NGINX One Documentation: https://docs.nginx.com/nginx-one-console/waf-integration/overview/ NGINX Instance Manager Documentation: https://docs.nginx.com/nginx-instance-manager/waf-integration/overview/112Views2likes0CommentsF5 Distributed Cloud Customer Edge Sites: Deploy rapidly and easily to most platforms and providers
Businesses need secure, reliable, and scalable infrastructure to manage their network edge effectively. Secure Mesh Site v2 (SMSv2) on F5 Distributed Cloud brings a robust, next-generation approach to deploying Customer Edge (CE) devices, enabling organizations to streamline operations, boost resilience, and ensure secure communications across distributed environments. Using SMSv2 to deploy CE’s at edge locations in hybrid and multicloud environments significantly reduces the number of clicks and the time it takes to get new sites online. Distributed Cloud supports the following on-prem hypervisors, virtualized platforms, and public cloud providers for rapidly deploying CE images: VMWare, AWS, Azure, GCP, OCI, Nutanix, OpenStack, Equinix, Baremetal, KVM, and OpenShift Virtualization To use SMSv2 you’ll need to have the Distributed Cloud service and an account. In the Distributed Cloud Console, navigate to the Multi-Cloud Network Connect workspace, then go to Site Management > Secure Mesh Sites v2. Now Add Secure Mesh Site, give the site a name and choose your provider. All remaining options can be used as-is with the default values, and can be changed as needed to meet your organization’s networking and business requirements. Demo The following video overview shows how to use Distributed Cloud to deploy CE's on VMware, RedHat OpenShift Virtualization, and Nutanix, using the new SMSv2 capability. Comprehensive Resources and Guides For a deeper dive, comprehensive guides and materials are available at F5 DevCentral. These resources provide step-by-step instructions and best practices for deploying and managing app delivery and security in hybrid environments. The following guides provide step-by-step details for using SMSv2 to deploy CE’s. VMware Setup Example #1:https://github.com/f5devcentral/f5-xc-terraform-examples/tree/main/workflow-guides/smcn/application-dmz#12-create-secure-mesh-site-in-distributed-cloud-services Setup Example #2: https://github.com/f5devcentral/f5-xc-terraform-examples/blob/main/workflow-guides/application-delivery-security/workload/workload-deployments-on-vmware.rst Nutanix https://github.com/f5devcentral/f5-xc-terraform-examples/blob/main/workflow-guides/smsv2-ce/Secure_Mesh_Site_v2_in_Nutanix/secure_mesh_site_v2_in_nutanix.rst OpenShift Virtualization https://github.com/f5devcentral/f5-xc-terraform-examples/blob/main/workflow-guides/application-delivery-security/workload/workload-deployments-on-ocp.rst Azure https://github.com/f5devcentral/f5-xc-terraform-examples/blob/main/workflow-guides/application-delivery-security/workload/workload-deployments-on-azure.rst Looking at the larger picture, using Distributed Cloud to expand or migrate apps across platforms has never been easier. The following technical articles illustrate how Distributed Cloud can leverage multiple platforms and providers to expand and migrate applications hosted in many locations and on a mix of platforms. Distributed Cloud for App Delivery & Security for Hybrid Environments App Migration across Heterogeneous Environments using F5 Distributed Cloud Conclusion By leveraging SMSv2, businesses can enjoy enhanced network scalability, minimized downtime through intelligent failover, and advanced security protocols designed to protect critical data in transit. Whether deploying in multi-cloud, hybrid, or edge-driven architectures, SMSv2 delivers the adaptability, performance, and security necessary to meet the demands of today’s digital-first enterprises.
175Views2likes0CommentsBack to Basics: Health Monitors and Load Balancing
#webperf #ado Because every connection counts One of the truisms of architecting highly available systems is that you never, ever want to load balance a request to a system that is down. Therefore, some sort of health (status) monitoring is required. For applications, that means not just pinging the network interface or opening a TCP connection, it means querying the application and verifying that the response is valid. This, obviously, requires the application to respond. And respond often. Best practices suggest determining availability every 5 seconds or so. That means every X seconds the load balancing service is going to open up a connection to the application and make a request. Just like a user would do. That adds load to the application. It consumes network, transport, application and (possibly) database resources. Resources that cannot be used to service customers. While the impact on a single application may appear trivial, it's not. Remember, as load increases performance decreases. And no matter how trivial it may appear, health monitoring is adding load to what may be an already heavily loaded application. But Lori, you may be thinking, you expound on the importance of monitoring and visibility all the time! Are you saying we shouldn't be monitoring applications? Nope, not at all. Visibility is paramount, providing the actionable data necessary to enable highly dynamic, automated operations such as elasticity. Visibility through health-monitoring is a critical means of ensuring availability at both the local and global level. What we may need to do, however, is move from active to passive monitoring. PASSIVE MONITORING Passive monitoring, as the modifier suggests, is not an active process. The Load balancer does not open up connections nor query an application itself. Instead, it snoops on responses being returned to clients and from that infers the current status of the application. For example, if a request for content results in an HTTP error message, the load balancer can determine whether or not the application is available and capable of processing subsequent requests. If the load balancer is a BIG-IP, it can mark the service as "down" and invoke an active monitor to probe the application status as well as retrying the request to another available instance – insuring end-users do not see an error. Passive (inband) monitors are not binary. That is, they aren't simple "on" or "off" based on HTTP status codes. Such monitors can be configured to track the number of failures and evaluate failure rates against a configurable failure interval. When such thresholds are exceeded, the application can then be marked as "down". Passive monitors aren't restricted to availability status, either. They can also monitor for performance (response time). Failure to meet response time expectations results in a failure, and the application continues to be watched for subsequent failures. Passive monitors are, like most inline/inband technologies, transparent. They quietly monitor traffic and act upon that traffic without adding overhead to the process. Passive monitoring gives operations the visibility necessary to enable predictable performance and to meet or exceed user expectations with respect to uptime, without negatively impacting performance or capacity of the applications it is monitoring.3KViews1like2CommentsThe Limits of Cloud: Gratuitous ARP and Failover
#Cloud is great at many things. At other things, not so much. Understanding the limitations of cloud will better enable a successful migration strategy. One of the truisms of technology is that takes a few years of adoption before folks really start figuring out what it excels at – and conversely what it doesn't. That's generally because early adoption is focused on lab-style experimentation that rarely extends beyond basic needs. It's when adoption reaches critical mass and folks start trying to use the technology to implement more advanced architectures that the "gotchas" start to be discovered. Cloud is no exception. A few of the things we've learned over the past years of adoption is that cloud is always on, it's simple to manage, and it makes applications and infrastructure services easy to scale. Some of the things we're learning now is that cloud isn't so great at supporting application mobility, monitoring of deployed services and at providing advanced networking capabilities. The reason that last part is so important is that a variety of enterprise-class capabilities we've come to rely upon are ultimately enabled by some of the advanced networking techniques cloud simply does not support. Take gratuitous ARP, for example. Most cloud providers do not allow or support this feature which ultimately means an inability to take advantage of higher-level functions traditionally taken for granted in the enterprise – like failover. GRATUITOUS ARP and ITS IMPLICATIONS For those unfamiliar with gratuitous ARP let's get you familiar with it quickly. A gratuitous ARP is an unsolicited ARP request made by a network element (host, switch, device, etc… ) to resolve its own IP address. The source and destination IP address are identical to the source IP address assigned to the network element. The destination MAC is a broadcast address. Gratuitous ARP is used for a variety of reasons. For example, if there is an ARP reply to the request, it means there exists an IP conflict. When a system first boots up, it will often send a gratuitous ARP to indicate it is "up" and available. And finally, it is used as the basis for load balancing failover. To ensure availability of load balancing services, two load balancers will share an IP address (often referred to as a floating IP). Upstream devices recognize the "primary" device by means of a simple ARP entry associating the floating IP with the active device. If the active device fails, the secondary immediately notices (due to heartbeat monitoring between the two) and will send out a gratuitous ARP indicating it is now associated with the IP address and won't the rest of the network please send subsequent traffic to it rather than the failed primary. VRRP and HSRP may also use gratuitous ARP to implement router failover. Most cloud environments do not allow broadcast traffic of this nature. After all, it's practically guaranteed that you are sharing a network segment with other tenants, and thus broadcasting traffic could certainly disrupt other tenant's traffic. Additionally, as security minded folks will be eager to remind us, it is fairly well-established that the default for accepting gratuitous ARPs on the network should be "don't do it". The astute observer will realize the reason for this; there is no security, no ability to verify, no authentication, nothing. A network element configured to accept gratuitous ARPs does so at the risk of being tricked into trusting, explicitly, every gratuitous ARP – even those that may be attempting to fool the network into believing it is a device it is not supposed to be. That, in essence, is ARP poisoning, and it's one of the security risks associated with the use of gratuitous ARP. Granted, someone needs to be physically on the network to pull this off, but in a cloud environment that's not nearly as difficult as it might be on a locked down corporate network. Gratuitous ARP can further be used to execute denial of service, man in the middle and MAC flooding attacks. None of which have particularly pleasant outcomes, especially in a cloud environment where such attacks would be against shared infrastructure, potentially impacting many tenants. Thus cloud providers are understandably leery about allowing network elements to willy-nilly announce their own IP addresses. That said, most enterprise-class network elements have implemented protections against these attacks precisely because of the reliance on gratuitous ARP for various infrastructure services. Most of these protections use a technique that will tentatively accept a gratuitous ARP, but not enter it in its ARP cache unless it has a valid IP-to-MAC mapping, as defined by the device configuration. Validation can take the form of matching against DHCP-assigned addresses or existence in a trusted database. Obviously these techniques would put an undue burden on a cloud provider's network given that any IP address on a network segment might be assigned to a very large set of MAC addresses. Simply put, gratuitous ARP is not cloud-friendly, and thus it is you will be hard pressed to find a cloud provider that supports it. What does that mean? That means, ultimately, that failover mechanisms in the cloud cannot be based on traditional techniques unless a means to replicate gratuitous ARP functionality without its negative implications can be designed. Which means, unfortunately, that traditional failover architectures – even using enterprise-class load balancers in cloud environments – cannot really be implemented today. What that means for IT preparing to migrate business critical applications and services to cloud environments is a careful review of their requirements and of the cloud environment's capabilities to determine whether availability and uptime goals can – or cannot – be met using a combination of cloud and traditional load balancing services.1.3KViews1like0CommentsIP::addr and IPv6
Did you know that all address internal to tmm are kept in IPv6 format? If you’ve written external monitors, I’m guessing you knew this. In the external monitors, for IPv4 networks the IPv6 “header” is removed with the line: IP=`echo $1 | sed 's/::ffff://'` IPv4 address are stored in what’s called “IPv4-mapped” format. An IPv4-mapped address has its first 80 bits set to zero and the next 16 set to one, followed by the 32 bits of the IPv4 address. The prefix looks like this: 0000:0000:0000:0000:0000:ffff: (abbreviated as ::ffff:, which looks strickingly simliar—ok, identical—to the pattern stripped above) Notation of the IPv4 section of the IPv4-formatted address vary in implementations between ::ffff:192.168.1.1 and ::ffff:c0a8:c8c8, but only the latter notation (in hex) is supported. If you need the decimal version, you can extract it like so: % puts $x ::ffff:c0a8:c8c8 % if { [string range $x 0 6] == "::ffff:" } { scan [string range $x 7 end] "%2x%2x:%2x%2x" ip1 ip2 ip3 ip4 set ipv4addr "$ip1.$ip2.$ip3.$ip4" } 192.168.200.200 Address Comparisons The text format is not what controls whether the IP::addr command (nor the class command) does an IPv4 or IPv6 comparison. Whether or not the IP address is IPv4-mapped is what controls the comparison. The text format merely controls how the text is then translated into the internal IPv6 format (ie: whether it becomes a IPv4-mapped address or not). Normally, this is not an issue, however, if you are trying to compare an IPv6 address against an IPv4 address, then you really need to understand this mapping business. Also, it is not recommended to use 0.0.0.0/0.0.0.0 for testing whether something is IPv4 versus IPv6 as that is not really valid a IP address—using the 0.0.0.0 mask (technically the same as /0) is a loophole and ultimately, what you are doing is loading the equivalent form of a IPv4-mapped mask. Rather, you should just use the following to test whether it is an IPv4-mapped address: if { [IP::addr $IP1 equals ::ffff:0000:0000/96] } { log local0. “Yep, that’s an IPv4 address” } These notes are covered in the IP::addr wiki entry. Any updates to the command and/or supporting notes will exist there, so keep the links handy. Related Articles F5 Friday: 'IPv4 and IPv6 Can Coexist' or 'How to eat your cake ... Service Provider Series: Managing the ipv6 Migration IPv6 and the End of the World No More IPv4. You do have your IPv6 plan running now, right ... Question about IPv6 - BIGIP - DevCentral - F5 DevCentral ... Insert IPv6 address into header - DevCentral - F5 DevCentral ... Business Case for IPv6 - DevCentral - F5 DevCentral > Community ... We're sorry. The IPv4 address you are trying to reach has been ... Don MacVittie - F5 BIG-IP IPv6 Gateway Module1.4KViews1like1CommentTACACS+ Remote Role Configuration for BIG-IP
Several years ago (can it really have been 2009?) I wrote up a solution for using tacacs+ as the authentication and authorization source for BIG-IP user management. Much has changed in five years: new roles have been added to the system, tmsh has replaced bigpipe, and unrelated to our end of the solution, my favorite flavor of the free tacacs daemon, tac_plus, is no longer available! This article will cover all the steps necessary to get a tacacs+ installation established on a Ubuntu server, configure tacacs+, configure the BIG-IP to utilize that tacacs+ server, and test the installation. Before that, however, I'll address the role information necessary to make it all work. The tacacs config in this article is dependent on a version that I am no longer able to get installed on a modern linux flavor. Instead, try this Dockerized tacacs+ server for your testing. The details in the rest of the article are still appropriate. BIG-IP Remote Role Details There are quite a few more roles than previously. The table below shows all the roles available as of TMOS version 11.5.1. Role Role Value admin 0 resource-admin 20 user-manager 40 auditor 80 manager 100 application-editor 300 operator 400 certificate-manager 500 irule-manager 510 guest 700 web-application-security-administrator 800 web-application-security-editor 810 acceleration-policy-editor 850 no-access 900 In addition to the role, the console (tmsh or disabled) and partition (all, Common (default) or specified partition) settings need to be addressed. Installing tac_plus First, download the tac_plus package from pro-bono to /var/tmp. I'm assuming you already have gcc installed, if you don't, please check google for installing gcc on your Ubuntu installation. Change directory to /var/tmp and extract the package. cd /var/tmp/ #current file is DEVEL.201407301604.tar.bz2 tar xvf DEVEL.201407301604.tar.bz2 Change directory into PROJECTS, configure the package for tacacs, then compile and install it. Do these steps one at a time (don't copy and paste the group.) cd PROJECTS ./configure tac_plus make sudo make install After a successful installation, copy the sample configuration to the config directory, and copy the init script over to the system init script directory, modify the file attributes and permissions, then apply the init script to the system. sudo cp /usr/local/etc/mavis/sample/tac_plus.cfg /usr/local/etc/ sudo cp /var/tmp/PROJECTS/tac_plus/extra/etc_init.d_tac_plus /etc/init.d/tac_plus sudo chmod 755 /etc/init.d/tac_plus sudo update-rc.d tac_plus defaults Configuring tac_plus Now that the installation is complete, the configuration file needs to be cleaned up and configured. There are many options that can extend the power of the tac_plus daemon, but this article will focus on authentication and authorization specific to the BIG-IP role information described above. Starting with the daemon listener itself, this is contained in the spawnd id. I changed the port to the default tacacs port, which is 49 (tcp). id = spawnd { listen = { port = 49 } spawn = { instances min = 1 instances max = 10 } background = no } Next, the logging locations and host information need to be set. I left the debug values alone, as well as the binding address. Assume all the remaining code snippets from the tac_plus configuration are wrapped in the id = tac_plus { } section. debug = PACKET AUTHEN AUTHOR access log = /var/log/access.log accounting log = /var/log/acct.log host = world { address = ::/0 prompt = "\nAuthorized access only!\nTACACS+ Login\n" key = f5networks } After the host data is configured, the groups need to be configured. For this exercise, the groups will be aligned to the administrator, application editor, user manager, and ops roles, with admins and ops getting console access. Admins will have access to all partitions, ops will have access only to partition1, and the remaining groups will have access to the Common partition. group = adm { service = ppp { protocol = ip { set F5-LTM-User-Info-1 = adm set F5-LTM-User-Console = 1 set F5-LTM-User-Role = 0 set F5-LTM-User-Partition = all } } } group = appEd { service = ppp { protocol = ip { set F5-LTM-User-Info-1 = appEd set F5-LTM-User-Console = 0 set F5-LTM-User-Role = 300 set F5-LTM-User-Partition = Common } } } group = userMgr { service = ppp { protocol = ip { set F5-LTM-User-Info-1 = userMgr set F5-LTM-User-Console = 0 set F5-LTM-User-Role = 40 set F5-LTM-User-Partition = Common } } } group = ops { service = ppp { protocol = ip { set F5-LTM-User-Info-1 = ops set F5-LTM-User-Console = 1 set F5-LTM-User-Role = 400 set F5-LTM-User-Partition = partition1 } } } Finally, map a user to each of those groups for testing the solution. I would not recommend using a clear key (host configuration) or clear passwords in production, these are shown here for demonstration purposes only. Mapping to /etc/password, or even a centralized ldap/ad solution would be far better for operational considerations. user = f5user1 { password = clear letmein member = adm } user = f5user2 { password = clear letmein member = appEd } user = f5user3 { password = clear letmein member = userMgr } user = f5user4 { password = clear letmein member = ops } Save the file, and then start the tac_plus daemon by typing service tac_plus start. Configuring BIG-IP Now that the tacacs configuration is complete and the service is available, the BIG-IP needs to be configured to use it! The remote role configuration is pretty straight forward in tmsh, and note that the role info aligns with the groups configured in tac_plus. auth remote-role { role-info { adm { attribute F5-LTM-User-Info-1=adm console %F5-LTM-User-Console line-order 1 role %F5-LTM-User-Role user-partition %F5-LTM-User-Partition } appEd { attribute F5-LTM-User-Info-1=appEd console %F5-LTM-User-Console line-order 2 role %F5-LTM-User-Role user-partition %F5-LTM-User-Partition } ops { attribute F5-LTM-User-Info-1=ops console %F5-LTM-User-Console line-order 4 role %F5-LTM-User-Role user-partition %F5-LTM-User-Partition } userMgr { attribute F5-LTM-User-Info-1=userMgr console %F5-LTM-User-Console line-order 3 role %F5-LTM-User-Role user-partition %F5-LTM-User-Partition } } } Note: Because we defined the behaviors for each role in tac_plus, they don't need to be redefined here, which is why the % syntax is used in this configuration for the console, role, and user-partition. However, if it is preferred to define the behaviors on box, that can be done instead and then you can just define the F5-LTM-User-Info-1 attribute on tac_plus. Either way is supported. Here's an example of the alternative on the BIG-IP side for the admin role. adm { attribute F5-LTM-User-Info-1=adm console enabled line-order 1 role administrator user-partition All } Final step is to set the authentication source to tacacs and set the host parameters. auth source { type tacacs } auth tacacs system-auth { debug enabled protocol ip secret $M$2w$jT3pHxY6dqGF1tHKgl4mWw== servers { 192.168.6.10 } service ppp } Testing the Solution It wouldn't be much of a solution if it didn't work, so the following screenshots show the functionality as expected in the GUI and the CLI. F5user1 This user is in the admin group, and should have access to all the partitions, be an administrator, and be able to not only connect to the console, but jump out of tmsh to the advanced shell. You can do this with the run util bash command in tmsh. F5user2 This user is an application editor, and should have access only to the common partition with no access to the console. Notice the failed logins at the CLI, and the partition is firm with no drop down. F5user3 This user has the user manager role and like the application editor has no access to the console. The partition is hard-coded to common as well. F5user4 Finally, the last user is mapped to the ops group, so they will be bound to partition1, and whereas they have console access, they do not have access to the advanced shell as they are not an admin user.5.6KViews1like5CommentsOrchestrated Infrastructure Security - BIG-IQ
The F5 Beacon capabilities referenced in this article hosted on F5 Cloud Services are planning a migration to a new SaaS Platform - Check out the latest here. Introduction This article is part of a series on implementing Orchestrated Infrastructure Security. It includes High Availability, Central Management with BIG-IQ, Application Visibility with Beacon and the protection of critical assets using F5 Advanced WAF and Protocol Inspection (IPS) with AFM. It is also assumed that BIG-IQ is deployed, and basic network connectivity is working. If you need help setting up BIG-IQ for the first time, refer to the Dev/Central article series Implementing SSL Orchestrator here. That article covers SSL Orchestrator but the procedure to add Advanced WAF and AFM to BIG-IQ is the same. This article focuses on configuring BIG-IQ version 7.1.0 to manage F5 Advanced WAF, AFM and SSL Orchestrator. It covers management of BIG-IP running version 15.1.0.4 and SSL Orchestrator version 7.4.9, and version 16.0.0 with AFM and Advanced WAF. Please forgive me for using SSL and TLS interchangeably in this article. This article is divided into the following high level sections: Import BIG-IP Devices into BIG-IQ Service Import Error Resolution Schedule regular backups of BIG-IP devices Push backups to BIG-IP device Import BIG-IP Devices into BIG-IQ From the BIG-IQ GUI go to Devices > BIG-IP Devices. This is where you add new devices to be managed by BIG-IQ. You should add the two SSL Orchestrator’s using the Dev/Central article above. Click Add Device(s) to add Advanced WAF and AFM devices. Select the option to Add BIG-IP device(s) and automatically discover and import services. Then click Add Devices. Enter the IP Addresses of the Devices you want to add, 192.168.41.3 and 192.168.41.4 in this example (use the Plus sign to add another IP address field). These are the two AFM devices. Enter the username and password to access these devices. Under Services check the box for Network Security (AFM) then scroll down. Check the box to enable Statistics Collection. You can configure a Zone and/or Cluster Display Name if desired. Click Save and Close. Your screen should look like the following. Click Add Devices so we can add the two Advanced WAFs. Enter the IP Addresses of the Devices you want to add, 192.168.41.21 and 192.168.41.22 in this example (use the Plus sign to add another IP address field). These are the two Advanced WAF devices. Enter the username and password to access these devices. Under Services check the box for Web Application Security (ASM) then scroll down. Check the box to enable Statistics Collection. You can configure a Zone and/or Cluster Display Name if desired. Click Save and Close. Click Discover and Import. You should see a Progress screen. Click Close. When complete, your screen should look similar to the following.= Service Import Error Resolution Some devices had errors during Import. Click the first one to resolve it. There was a conflict importing SSM. Check the box to create a snapshot of the configuration then click Import. The following items were changed on the BIG-IP. You can choose to import these into the BIG-IQ by selecting Set all BIG-IP. Click Continue. A dialog screen will present you with more information about what you’re doing. Click Resolve. Click Import to complete the import process. You may want to create a Snapshot of the configuration by checking the box. The BIG-IP Devices screen should look like this. The Advanced WAF device has been successfully imported. Repeat this process for any devices with an import error. When all Devices are successfully imported the screen should look like this. Schedule regular backups of BIG-IP Devices Now is a good time to schedule regular Backups. Check the box next to Status to select all the BIG-IPs. Click the down Arrow next to More and select Schedule Backup. Give the Backup a name, Backup_all in this example. There are several options here that you may wish to enable. For Local Retention Policy, it’s not a bad idea to keep multiple backups, 3 in this example. The Start Date and time can be adjusted to suit your needs. The Devices should automatically be selected. You can optionally enable the Archiving of Backups to an external SCP or SFTP server. Click Save & Close. Push backups to BIG-IP Device At some point you may need to restore one of your BIG-IP devices from a backup. To do this select the Devices tab > Back Up & Restore > Backup Files. From here you can view the different backup files. You can also Compare, Download, Restore or Delete backup files. Select the backup you would like to restore then click Restore. You will be presented with a confirmation message warning you that the configuration of the device is about to be overwritten from the backup. Click Restore to proceed. While the device is being restored you will see the following. Select BIG-IP Devices to check the status of the device when the restore is complete. Summary In this article you learned how to import BIG-IP devices into BIG-IQ, import the BIG-IP Services and schedule regular backups of the BIG-IP devices. Next Steps Click Next to proceed to the next article in the series.658Views1like0Comments