cloud
3927 TopicsGetting Started with the Certified F5 NGINX Gateway Fabric Operator on Red Hat OpenShift
As enterprises modernize their Kubernetes strategies, the shift from standard Ingress Controllers to the Kubernetes Gateway API is redefining how we manage traffic. For years, the F5 NGINX Ingress Controller has been a foundational component in OpenShift environments. With the certification of F5 NGINX Gateway Fabric (NGF) 2.2 for Red Hat OpenShift, that legacy enters its next chapter. This new certified operator brings the high-performance NGINX data plane into the standardized, role-oriented Gateway API model—with full integration into OpenShift Operator Lifecycle Manager (OLM). Whether you're a platform engineer managing cluster ingress or a developer routing traffic to microservices, NGF on OpenShift 4.19+ delivers a unified, secure, and fully supported traffic fabric. In this guide, we walk through installing the operator, configuring the NginxGatewayFabric resource, and addressing OpenShift-specific networking patterns such as NodePort + Route. Why NGINX Gateway Fabric on OpenShift? While Red Hat OpenShift 4.19+ includes native support for the Gateway API (v1.2.1), integrating NGF adds critical enterprise capabilities: ✔ Certified & OpenShift-Ready The operator is fully validated by Red Hat, ensuring UBI-compliant images and compatibility with OpenShift’s strict Security Context Constraints (SCCs). ✔ High Performance, Low Complexity NGF delivers the core benefits long associated with NGINX—efficiency, simplicity, and predictable performance. ✔ Advanced Traffic Capabilities Capabilities like Regular Expression path matching and support for ExternalName services allow for complex, hybrid-cloud traffic patterns. ✔ AI/ML Readiness NGF 2.2 supports the Gateway API Inference Extension, enabling inference-aware routing for GenAI and LLM workloads on platforms like Red Hat OpenShift AI. Prerequisites Before we begin, ensure you have: Cluster Administrator access to an OpenShift cluster (version 4.19 or later is recommended for Gateway API GA support). Access to the OpenShift Console and the oc CLI. Ability to pull images from ghcr.io or your internal mirror. Step 1: Installing the Operator from OperatorHub We leverage the Operator Lifecycle Manager (OLM) for a "point-and-click" installation that handles lifecycle management and upgrades. Log into the OpenShift Web Console as an administrator. Navigate to Operators > OperatorHub. Search for NGINX Gateway Fabric in the search box. Select the NGINX Gateway Fabric Operator card and click Install Accept the default installation mode (All namespaces) or select a specific namespace (e.g. nginx-gateway), and click Install. Wait until the status shows Succeeded. Once installed, the operator will manage NGF lifecycle automatically. Step 2: Configuring the NginxGatewayFabric Resource Unlike the Ingress Controller, which used NginxIngressController resources, NGF uses the NginxGatewayFabric Custom Resource (CR) to configure the control plane and data plane. In the Console, go to Installed Operators > NGINX Gateway Fabric Operator. Click the NginxGatewayFabric tab and select Create NginxGatewayFabric. Select YAML view to configure the deployment specifics. Step 3: Configuring the NginxGatewayFabric Resource NGF uses a Kubernetes Service to expose its data plane. Before the data plane launches, we must tell the Controller how to expose it. Option A - LoadBalancer (ROSA, ARO, Managed OpenShift) By default, the NGINX Gateway Fabric Operator configures the service type as LoadBalancer. On public cloud managed OpenShift services (like ROSA on AWS or ARO on Azure), this native default works out-of-the-box to provision a cloud load balancer. No additional steps required. Option B - NodePort with OpenShift Route (On-Prem/Hybrid) However, for on-premise or bare-metal OpenShift clusters lacking a native LoadBalancer implementation, the common pattern is to use a NodePort service exposed via an OpenShift Route. Update the NGF CR to use NodePort In the Console, go to Installed Operators > NGINX Gateway Fabric Operator. Click the NginxGatewayFabric tab and select NginxGatewayFabric. Select YAML view to directly edit the configuration specifics. Change the spec.nginx.service.type to NodePort: apiVersion: gateway.nginx.org/v1alpha1 kind: NginxGatewayFabric metadata: name: default namespace: nginx-gateway spec: nginx: service: type: NodePort Create the OpenShift Route: After applying the CR, create a Route to expose the NGINX Service. oc create route edge ngf \ --service=nginxgatewayfabric-sample-nginx-gateway-fabric\ --port=http \ -n nginx-gateway Note: This creates an Edge TLS termination route. For passthrough TLS (allowing NGINX to handle certificates), use --passthrough and target the https port. Step 4: Validating the Deployment Verify that the operator has deployed the control plane pods successfully. oc get pod -n nginx-gateway NAME READY STATUS RESTARTS AGE nginx-gateway-fabric-controller-manager-dd6586597-bfdl5 1/1 Running 0 23m nginxgatewayfabric-sample-nginx-gateway-fabric-564cc6df4d-hztm8 1/1 Running 0 18m oc get gatewayclass NAME CONTROLLER ACCEPTED AGE nginx gateway.nginx.org/nginx-gateway-controller True 4d1h You should also see a GatewayClass named nginx. This indicates the controller is ready to manage Gateway resources. Step 5: Functional Check with Gateway API To test traffic, we will use the standard Gateway API resources (Gateway and HTTPRoute) Deploy a Test Application (Cafe Service) Ensure you have a backend service running. You can use a simple service for validation. Create a Gateway This resource opens the listener on the NGINX data plane. apiVersion: gateway.networking.k8s.io/v1 kind: Gateway metadata: name: cafe spec: gatewayClassName: nginx listeners: - name: http port: 80 protocol: HTTP Create an HTTPRoute This binds the traffic to your backend service. apiVersion: gateway.networking.k8s.io/v1 kind: HTTPRoute metadata: name: coffee spec: parentRefs: - name: cafe hostnames: - "cafe.example.com" rules: - matches: - path: type: PathPrefix value: / backendRefs: - name: coffee port: 80 Test Connectivity If you used Option B (Route), send a request to your OpenShift Route hostname. If you used Option A, send it to the LoadBalancer IP. OpenShift 4.19 Compatibility Meanwhile, it is vital to understand the "under the hood" constraints of OpenShift 4.19: Gateway API Version Pinning: OpenShift 4.19 ships with Gateway API CRDs pinned to v1.2.1. While NGF 2.2 supports v1.3.0 features, it has been conformance-tested against v1.2.1 to ensure stability within OpenShift's version-locked environment. oc get crd gateways.gateway.networking.k8s.io -o yaml | grep "gateway.networking.k8s.io/" gateway.networking.k8s.io/bundle-version: v1.2.1 gateway.networking.k8s.io/channel: standard However, looking ahead, future NGINX Gateway Fabric releases may rely on newer Gateway API specifications that are not natively supported by the pinned CRDs in OpenShift 4.19. If you anticipate running a newer NGF version that may not be compatible with the current OpenShift Gateway API version, please reach out to us to discuss your compatibility requirements. Security Context Constraints (SCC): In previous manual deployments, you might have wrestled with NET_BIND_SERVICE capabilities or creating custom SCCs. The Certified Operator handles these permissions automatically, using UBI-based images that comply with Red Hat's security standards out of the box. Next Steps: AI Inference With NGF running, you are ready for advanced use cases: AI Inference: Explore the Gateway API Inference Extension to route traffic to LLMs efficiently, optimizing GPU usage on Red Hat OpenShift AI. The certified NGINX Gateway Fabric Operator simplifies the operational burden, letting you focus on what matters: delivering secure, high-performance applications and AI workloads. References: NGINX Gateway Fabric Operator on Red Hat Catalog F5 NGINX Gateway Fabric Certified for Red Hat OpenShift NGINX Gateway Fabric Installation Docs116Views1like0CommentsOverview of MITRE ATT&CK Tactic : TA0009 - Collection
This article is a continuation of our MITRE ATT&CK series. In this article, we focus on the Collection tactic, and the techniques adversaries use to gather, stage, and organize data from compromised systems before exfiltration. As attackers progress through an intrusion, Collection becomes critical for assembling sensitive files, credentials, screenshots, and other high‑value information that will fuel data theft, espionage, or destructive operations.45Views2likes0CommentsOverview of MITRE ATT&CK Tactic: TA0040 - Impact
This article focuses on the Impact Tactic, and the techniques adversaries use to manipulate, disrupt or damage the systems and data as they reach the final stage of an attack. This is one of the critical tactics, as it highlights the adverse effects attackers can cause, including exploitation, operational disruption, data destruction, or financial gain50Views1like0CommentsGlobal Log Receiver - HTTP Receiver keeps sending the same logs
I have set up an HTTP receiver as follows: { "metadata": { "name": "syslog-ng", "namespace": "shared", "labels": {}, "annotations": {}, "disable": false }, "spec": { "ns_list": { "namespaces": [ "my-company" ] }, "http_receiver": { "uri": "http://xxx.xxx.xxx.xxx:8084", "auth_none": {}, "compression": { "compression_none": {} }, "batch": { "timeout_seconds_default": {}, "max_events_disabled": {}, "max_bytes_disabled": {} }, "no_tls": {} }, "security_events": {} } } I receive logs but they get repeated on every new POST. The Test Connection button fails with 504 Gateway Timeout. On the receiving end, I have a syslog-ng with HTTP receiver, not much configured there. Any ideas?34Views0likes2CommentsF5 Distributed Cloud (XC) Custom Routes: Capabilities, Limitations, and Key Design Considerations
This article explores how Custom Routes work in F5 Distributed Cloud (XC), why they differ architecturally from standard Load Balancer routes, and what to watch out for in real-world deployments, covering backend abstraction, Endpoint/Cluster dependencies, and critical TLS trust and Root CA requirements.131Views2likes1CommentForwarding Logs to SIEM Tools via HTTP Proxy for F5 Distributed Cloud Global Log Receiver
Purpose This guide provides a solution for forwarding logs to SIEM tools that support syslog but lack HTTP/HTTPS ingestion capabilities. It covers the deployment and tuning of an HTTP Proxy log receiver configured to work with F5 Distributed Cloud (XC) Global Log Receiver settings. Audience: This guide is intended for technical professionals, including SecOps teams and Solution Architects, who are responsible for integrating SIEM tools with F5 XC Global Log Receiver. Readers should have a solid understanding of HTTP communication (methods, request body, reverse proxy), syslog, and data center network architecture. Familiarity with F5 XC concepts such as namespaces, log types, events, and XC-GLR is also required. Introduction: Problem Statement: SIEM tools often support syslog ingestion but lack HTTP/HTTPS log reception capabilities. Objective: Explain how to deploy and configure an HTTP Proxy to forward logs to F5 Distributed Cloud Global Log Receiver. Solution Overview: Architecture Diagram and workflow: Configuration Steps: Configure Global Log Receiver in F5 Distributed Cloud Console Navigate to: Home → Shared Configuration → Global Log Receiver Create or edit the Global Log Receiver settings for HTTP receiver Ensure the Global Log Receiver batch size is based on the payload size expected from F5 NGINX. Example configuration snap: Set Up NGINX as an HTTP Log Receiver Install NGINX on your designated server. Configure log_format Configure NGINX to accept HTTP POST requests only and forward access logs to syslog Example configuration snippet: log_format custom_log_format_1 escape=json $request_body; # Example: include request body only server { listen 443 ssl; server_name <logreceiver_server_name>; ssl_certificate /etc/ssl/<logreceiver_server_cert>; ssl_certificate_key /etc/ssl/<logreceiver_server_key>; # Other SSL/TLS configurations (e.g., protocols, ciphers) ssl_protocols TLSv1.2 TLSv1.3; ssl_ciphers HIGH:!aNULL:!MD5; client_body_in_single_buffer on; # The directive is recommended when using the $request_body variable, to save the number of copy operations involved client_body_in_file_only off; #default client_max_body_size 32M; # based on tuning gzip on; location /log_endpoint { # Allow only POST requests for sending log data limit_except POST { deny all; } # Configure access_log to write incoming data to a file # access_log /var/log/nginx/log_receiver.log custom_log_format_1; access_log syslog:server=127.0.0.1:514,facility=local7,tag=nginx,severity=info custom_log_format_1; proxy_pass http://localhost:8091/; # This dummy Internal server required to collect request_body variable. } } # dummy internal server to respond back 200 ok server { listen 8091; server_name localhost; location / { return 200 "Log received successfully."; } } Set Up rsyslog server Install/configure rsyslog on your designated server. Configure 60-nginx.conf file in /etc/rsyslog.d/ directory Sample 60-nginx.conf file #nginx.* @@127.0.0.1:514 :syslogtag, isequal, "[nginx]" /var/log/nginx-syslog/nginx-access-log.log References: F5 Distributed Cloud Global log receiver supports many log receivers natively: F5 Distributed Cloud Technical Knowledge page on "Configure Global Log receiver" Prerequisites: An external log collection system reachable publicly. The following IP address ranges are required to be added to your firewall's allowlist: 193.16.236.64/29 185.160.8.152/2976Views3likes0CommentsUsing AWS CloudHSM with F5 BIG-IP
With the release of TMOS version 17.5.1, BIG-IP now supports the latest AWS CloudHSM hardware security module (HSM) type, hsm2m.medium, and the latest AWS CloudHSM Client SDK, version 5. This article explains how to install and configure AWS CloudHSM Client SDK 5 on BIG-IP 17.5.1597Views1like4CommentsOverview of MITRE ATT&CK Tactic - TA0010 Exfiltration
Introduction In current times of cyber vulnerabilities, data theft is the ultimate objective with which attackers monetize their presence within a victim network. Once valuable information is identified and collected, the attackers can package sensitive data, bypass perimeter defences, and finalize the breach. Exfiltration (MITRE ATT&CK Tactic TA0010) represents a critical stage of the adversary lifecycle, where the adversaries focus on extracting data from the systems under their control. There are multiple ways to achieve this, either by using encryption and compression to avoid detection or utilizing the command-and-control channel to blend in with normal network traffic. To avoid this data loss, it is important for defenders to understand how data is transferred from any system in the network and the various transmission limits imposed to maintain stealth. This article walks through the most common Exfiltration techniques and how F5 solutions provide strong defense against them. T1020 - Automated Exfiltration To exfiltrate the data, adversaries may use automated processing after gathering the sensitive data during collection. T1020.001 – Traffic Duplication Traffic mirroring is a native feature for some devices for traffic analysis, which can be used by adversaries to automate data exfiltration. T1030 – Data Transfer Size Limits Exfiltration of the data in limited-size packets instead of whole files to avoid network data transfer threshold alerts. T1048 – Exfiltration over Alternative Protocol Stealing of data over a different protocol or channel other than the command-and-control channel created by the adversary. T1048.001 – Exfiltration Over Symmetric Encrypted Non-C2 Protocol Symmetric Encryption uses shared or the same keys/secrets on all the channels, which requires an exchange of the value used to encrypt and decrypt the data. This symmetric encryption leads to the implementation of Symmetric Cryptographic Algorithms, like RC4, AES, baked into the protocols, resulting in multiple layers of encryption. T1048.002 – Exfiltration Over Asymmetric Encrypted Non-C2 Protocol Asymmetric encryption algorithms or public-key cryptography require a pair of cryptographic keys that can encrypt/decrypt data from the corresponding keys on each end of the channel. T1048.003 – Exfiltration Over Unencrypted Non-C2 Protocol Instead of encryption, adversaries may obfuscate the routine channel without encryption within network protocols either by custom or publicly available encoding/compression algorithms (base64, hex-code) and embedding the data. T1041 – Exfiltration Over C2 Channel Adversaries can also steal the data over command-and-control channels and encode the data into normal communications. T1011 – Exfiltration Over Other Network Medium Exfiltration can also occur through a wired Internet connection, for example, a WiFi connection, modem, cellular data connection or Bluetooth. T1011.001 – Exfiltration Over Bluetooth Bluetooth can also be used to exfiltrate the data instead of a command-and-control channel in case the command-and-control channel is a wired Internet connection. T1052 – Exfiltration Over Physical Medium Under circumstances, such as an air-gapped network compromise, exfiltration occurs through a physical medium. Adversaries can exfiltrate data using a physical medium, for example, say a removable drive. Some examples of such media include external hard drives, USB drives, cellular phones, or MP3 players. T1052.001 – Exfiltration Over USB One such circumstance is where the adversary may attempt to exfiltrate data over a USB connected physical device, which can be used as the final exfiltration point or to hop between other disconnected systems. T1567 – Exfiltration Over Web Services Adversaries may use legitimate external Web Service to exfiltrate the data instead of their command-and-control channel. T1567.001 – Exfiltration to Code Repository To exfiltrate the data to a code repository, rather than adversary’s command-and-control channel. These code repositories are accessible via an API over HTTPS. T1567.002 – Exfiltration to Cloud Storage To exfiltrate the data to a cloud storage, rather than their primary command-and-control channel. These cloud storage services allow storage, editing and retrieval of the exfiltrated data. T1567.003 – Exfiltration to Text Storage Sites To exfiltrate the data to a text storage site, rather than their primary command-and-control. These text storage sites, like pastebin[.]com, are used by developers to share code. T1567.004 – Exfiltration Over Webhook Adversaries also exfiltrate the data to a webhook endpoint, which are simple mechanisms for allowing a server to push data over HTTP/S to a client. The creation of webhooks is supported by many public services, such as Discord and Slack, that can be used by other services, like GitHub, Jira, or Trello. T1029 – Scheduled Transfer To exfiltrate the data, the adversaries may schedule data exfiltration only at certain times of the day or at certain intervals, blending the traffic patterns with general activity. T1537 – Transfer Data to Cloud Account Many a times, exfiltration of data can also be through transferring the data through sharing/syncing and creating backups of cloud environment to another cloud account under adversary control on the same service. How F5 Can Help F5 offers a comprehensive suite of security solutions designed to safeguard applications and APIs across diverse environments, including cloud, edge, on-premises, and hybrid platforms. These solutions enable robust risk management to effectively mitigate and protect against MITRE ATT&CK Exfiltration threats, delivering advanced functionalities such as: Web Application Firewall (WAF): Available across all F5 products, the WAF is a flexible, multi-layered security solution that protects web applications from a wide range of threats. It delivers consistent defense, whether applications are deployed on-premises, in the cloud, or in hybrid environments. HTTPS Encryption: F5 provides robust HTTPS encryption to secure sensitive data in transit, ensuring protected communication between users and applications by preventing unauthorized access or data interception. Protecting sensitive data with Data Guard: F5's WAF Data Guard feature prevents sensitive data leakage by detecting and blocking exposure of confidential information, such as credit card numbers and PII. It uses predefined patterns and customizable policies to identify transmissions of sensitive data in application responses or inputs. This proactive mechanism secures applications against data theft and ensures compliance with regulatory standards. For more information, please contact your local F5 sales team. Conclusion Adversaries Exfiltration of data often aims to steal sensitive information by packaging it to evade detection, using methods such as compression or encryption. They may transfer the data through command-and-control channels or alternate paths while applying stealth techniques like transmission size limitations. To defend against these threats, F5 provides a layered approach with its advanced offerings. The Web Application Firewall (WAF) identifies and neutralizes malicious traffic aimed at exploiting application vulnerabilities. HTTPS encryption ensures secure data transmission, preventing unauthorized interception during the attack. Meanwhile, a data guard policy set helps detect and block exposure of confidential information, such as credit card numbers and PII. Together, these F5 solutions effectively counteract data exfiltration attempts and safeguard critical assets. Reference links MITRE | ATT&CK Tactic 10 – Exfiltration MITRE ATT&CK: What It Is, how it Works, Who Uses It and Why | F5 Labs MITRE ATT&CK®63Views1like0CommentsCVE mitigation on F5 XC vs classic F5 WAF
Hi, there is serious CVE out there: https://www.cve.org/CVERecord?id=CVE-2025-55182 And F5 reacted quickly: https://my.f5.com/manage/s/article/K000158058#BIG-IP F5 itself is not affected, but F5 company created signatures addressing this issue. But it seems they are NOT available in F5 XC. That leads me to thinking what is the process, what can we expect? We have deployed signatures on some onsite environments, but how about services behind F5 XC? Thanks, Zdenek54Views0likes3CommentsDistributed Cloud for App Delivery & Security for Hybrid Environments
As enterprises modernize and expand their digital services, they increasingly deploy multiple instances of the same applications across diverse infrastructure environments—such as VMware, OpenShift, and Nutanix—to support distributed teams, regional data sovereignty, redundancy, or environment-specific compliance needs. These application instances often integrate into service chains that span across clouds and data centers, introducing both scale and operational complexity. F5 Distributed Cloud provides a unified solution for secure, consistent application delivery and security across hybrid and multi-cloud environments. It enables organizations to add workloads seamlessly—whether for scaling, redundancy, or localization—without sacrificing visibility, security, or performance.316Views3likes0Comments