cloud
3813 TopicsXC Bot defense question
Hi, I read this article describing how to add XC botdefense into current onsite infra. But I do not understand how that works in detail. I will copy-paste my question I put into the article: How is it with routing, do I have to route traffic via XC WAAP? Or I dont have to worry about it and client traffic can access my local LB VIP via my dedicated internet line? In that case XC is doing what, just providing the logic to make a decision what to drop and what to allow? Thanks for any hint, Zdenek4Views0likes0CommentsBIG-IP BGP Routing Protocol Configuration And Use Cases
Is the F5 BIG-IP a router? Yes! No! Wait what? Can the BIG-IP run a routing protocol? Yes. But should it be deployed as a core router? An edge router? Stay tuned. We'll explore these questions and more through a series of common use cases using BGP on the BIG-IP... And oddly I just realized how close in typing BGP and BIG-IP are, so hopefully my editors will keep me honest. (squirrel!) In part one we will explore the routing components on the BIG-IP and some basic configuration details to help you understand what the appliance is capable of. Please pay special attention to some of the gotchas along the way. Can I Haz BGP? Ok. So your BIG-IP comes with ZebOS in order to provide routing functionality, but what happens when you turn it on? What do you need to do to get routing updates in to the BGP process? And well does my licensing cover it? Starting with the last question… tmsh show /sys license | grep "Routing Bundle" The above command will help you determine if you’re going to be able to proceed, or be stymied at the bridge like the Black Knight in the Holy Grail. Fear not! There are many licensing options that already come with the routing bundle. Enabling Routing First and foremost, the routing protocol configuration is tied to the route-domain. What’s a route-domain? I’m so glad you asked! Route-domains are separate Layer 3 route tables within the BIG-IP. There is a concept of parent and child route domains, so while they’re similar to another routing concept you may be familiar with; VRF’s, they’re no t quite the same but in many ways they are. Just think of them this way for now. For this context we will just say they are. Therefore, you can enable routing protocols on the individual route-domains. Each route-domain can have it’s own set of routing protocols. Or run no routing protocols at all. By default the BIG-IP starts with just route-domain 0. And well because most router guys live on the cli, we’ll walk through the configuration examples that way on the BIG-IP. tmsh modify net route-domain 0 routing-protocol add { BGP } So great! Now we’re off and running BGP. So the world know’s we’re here right? Nope. Considering what you want to advertise. The most common advertisements sourced from the BIG-IP are the IP addresses for virtual servers. Now why would I want to do that? I can just put the BIG-IP on a large subnet and it will respond to ARP requests and send gratuitous ARPs (GARP). So that I can reach the virtual servers just fine. <rant> Author's opinion here: I consider this one of the worst BIG-IP implementation methods. Why? Well for starters, what if you want to expand the number of virtual servers on the BIG-IP? Well then you need to re-IP the network interfaces of all the devices (routers, firewalls, servers) in order to expand the subnet mask. Yuck! Don't even talk to me about secondary subnets. Second: ARP floods! Too many times I see issues where the BIG-IP has to send a flood of GARPs; and well the infrastructure, in an attempt to protect its control plane, filters/rate limits the number of incoming requests it will accept. So engineers are left to try and troubleshoot the case of the missing GARPs Third: Sometimes you need to migrate applications to maybe another BIG-IP appliance as it grew to big for the existing infrastructure. Having it tied to this interface just leads to confusion. I'm sure there's some corner cases where this is the best route. But I would say it's probably in the minority. </rant> I can hear you all now… “So what do you propose kind sir?” See? I can hear you... Treat the virtual servers as loopback interfaces. Then they’re not tied to a specific interface. To move them you just need to start advertising the /32 from another spot (Yes. You could statically route it too. I hear you out there wanting to show your routing chops.) But also, the only GARPs are those from the self-ip's This allows you to statically route of course the entire /24 to the BIG-IP’s self IP address, but also you can use one of them fancy routing protocols to announce the routes either individually or through a summarization. Announcing Routes Hear ye hear ye! I want the world to know about my virtual servers. *ahem* So quick little tangent on BIG-IP nomenclature. The virtual server does not get announced in the routing protocol. “Well then what does?” Eery mind reading isn't it? Remember from BIG-IP 101, a virtual server is an IP address and port combination and well, routing protocols don’t do well with carrying the port across our network. So what BIG-IP object is solely an IP address construct? The virtual-address! “Wait what?” Yeah… It’s a menu item I often forget is there too. But here’s where you let the BIG-IP know you want to advertise the virtual-address associated with the virtual server. But… but… but… you can have multiple virtual servers tied to a single IP address (http/https/etc.) and that’s where the choices for when to advertise come in. tmsh modify ltm virtual-address 10.99.99.100 route-advertisement all There are four states a virtual address can be in: Unknown, Enabled, Disabled and Offline. When the virtual address is in Unknown or Enabled state, its route will be added to the kernel routing table. When the virtual address is in Disabled or Offline state, its route will be removed if present and will not be added if not already present. But the best part is, you can use this to only advertise the route when the virtual server and it’s associated pool members are all up and functioning. In simple terms we call this route health injection. Based on the health of the application we will conditionally announce the route in to the routing protocol. At this point, if you’d followed me this far you’re probably asking what controls those conditions. I’ll let the K article expand on the options a bit. https://my.f5.com/manage/s/article/K15923612 “So what does BGP have to do with popcorn?” Popcorn? Ohhhhhhhhhhh….. kernel! I see what you did there! I’m talking about the operating system kernel silly. So when a virtual-address is in an unknown or enabled state and it is healthy, the route gets put in the kernel routing table. But that doesn’t get it in to the BGP process. Here is how the kernel (are we getting hungry?) routes are represented in the routing table with a 'K' This is where the fun begins! You guessed it! Route redistribution? Route redistribution! And well to take a step back I guess we need to get you to the ZebOS interface. To enter the router configuration cli from the bash command line, simply type imish. In a multi-route-domain configuration you would need to supply the route-domain number but in this case since we’re just using the 0 default we’re good. It’s a very similar interface to many vendor’s router and switch configuration so many of you CCIE’s should feel right at home. It even still lets you do a write memory or wr mem without having to create an alias. Clearly dating myself here.. I’m not going to get in to the full BGP configuration at this point but the simplest way to get the kernel routes in to the BGP process is simply going under the BGP process and redisitrubting the kernel routes. BUT WAIT! Thar be dragons in that configuration! First landmine and a note about kernel routes. If you manually configure a static route on the BIG-IP via tmsh or the tmui those will show up also as kernel routes Why is that concerning? Well an example is where engineers configure a static default route on the BIG-IP via tmsh. And well, when you redistribute kernel routes and that default route is now being advertised into BGP. Congrats! AND the BIG-IP is NOT your default gateway hilarity ensues. And by hilarity I mean the type of laugh that comes out as you're updating your resume. The lesson here is ALWAYS when doing route redistribution always use a route filter to ensure only your intended routes or IP range make it in to the routing protocol. This goes for your neighbor statements too. In both directions! You should control what routes come in and leave the device. Another way to have some disasterous consequences with BIG-IP routing is through summarization. If you are doing summarization, keep in mind that BGP advertises based on reachability to the networks it wants to advertise. In this case, BGP is receiving it in the form of kernel routes from tmm. But those are /32 addresses and lots of them! And you want to advertise a /23 summary route. But the lone virtual-address that is configured for route advertisement; and the only one your BGP process knows about within that range has a monitor that fails. The summary route will be withdrawn leaving all the /23 stranded. Be sure to configure all your virtual-addresses within that range for advertisement. Next: BGP Behavior In High Availability Configurations2.2KViews6likes18CommentsLeverage BIG-IP 17.1 Distributed Cloud Services to Integrate F5 Distributed Cloud Bot Defense
Introduction: The F5 Distributed Cloud (XC) Bot Defense protects web and mobile properties from automated attacks by identifying and mitigating malicious bots. The Bot Defense uses JavaScript and API calls to collect telemetry and mitigate malicious users. The F5 Distributed Cloud (XC) Bot Defense is available in Standard and Enterprise service levels. In both the service levels the Bot Defense is available for traffic form web, web scarping, and mobile. The web scrapping is only applicable to web endpoints. This article will show you how to configure and use F5 Distributed Cloud Bot Defense (XC Bot Defense) on BIG-IP version 17.1 and above and monitor the solution on F5 Distributed Cloud Console (XC Console). Prerequisites: A valid XC Console account. If you don't have an account, visit Create a Distributed Cloud Console Account. An Organization plan. If you don't have an Organization plan, upgrade your plan. Getting Started: Log In to F5 XC Console: If XC Bot Defense isn't enabled, a Bot Defense landing page appears. Select Request Service to enable XC Bot Defense. If XC Bot Defense is enabled, you will see the tiles. Select Bot Defense. Verify you are in the correct Namespace. If your Namespace does not have any Protected Applications you will see the following page. Click Add Protected Application When you select a Namespace that has been configured with Protected Applications you will see this page. Scroll down to Manage Click Applications Click Add Application The Protected Application page is presented. Enter: Name Labels Description Select the Application Region - US in this example Connector Type - BIG-IP iApp for this demo. Cloudfront and Custom are other available connectors Scroll to the bottom and Click Save and Exit That will take you back to the Protected Applications Page. Verify your Application is listed with all the Metadata you supplied. Click the three ellipses to the right. Scroll down into the highlighted area and click and Copy App ID, Tenant ID and API Key Copy and save each value to a location where you can access it in the next steps. That completes the configuartion of F5 XC Console. Log In to your BIG-IP You will Notice in version 17.1 and above you will have a new selection along the left pane called Distributed Cloud Services. Expand and you will see all the latest integrations F5 provides. Application Traffic Insight Bot Defense Client-Side Defense Account Protection & Authentication Intelligence Cloud Services This article as stated before will focus on Bot Defense. Look for future articles that will focus on the other integrations. On the Main tab, Click Distributed Cloud Services > Bot Defense > Bot Profiles and Select Create This will bring up the General Properties page where you will enter required and optional information. Mandatory items have a Blue line on the edge. Supply a Name Application ID - From previous step Tenant ID - From previous step API Hostname - Web is filled in for you API Key - from previous step In the JS Injection Configuration section, the BIG-IP Handles JS Injectionsfield is checked by default, if you uncheck the field then follow the Note given in the Web UI. Protected Endpoint(s) - Web - Supply either the URI or IP of the Host Application along with the path and method you are protecting on the protected endpoint. In the following image, I have selected Advanced to show more detail of what is available. Again Mandatory fields have a blue indicator. Here the Protection Pool and SSL Profile. Click Finished when complete. One final step to complete the setup. Go to the Main tab, Local Traffic > Virtual Servers > Virtual Serves List Select the Virtual Server you are going to apply the Bot Defense profile to. Click on Distributed Cloud Services on the top banner Under Service Settings > Bot Defense set to Enable and then select the Bot Defense Profile you created in the above steps. The click Update. You have now sucessfully integrated BIG-IP Distributed Cloud Service on version 17.1 with F5 Distributed Coud Bot Defense. One final visual is the dashboard for F5 Distributed Cloud Bot Defense. This is where you will observe and monitor what bots and actions have been taken against bots and your protected applications. F5 XC Bot Defense on BIG-IP 17.1 Demo: Conclusion: I hope you were able to benefit from this tutorial. I was able to show how quickly and easlity it is to configure F5 Dsitributed Cloud Bot Defense on BIG-IP v17.1 using the built in Distributed Cloud Services integration. Related Links: https://www.f5.com/cloud https://www.f5.com/cloud/products/bot-defense BIG-IP Bot Defense on 14.x-16.x3.9KViews3likes4CommentsRidiculously Easy Bot Protection: How to Use BIG-IP APM to Streamline Bot Defense Implementation
Ever imagined how your Bot solution implementation would be with a standard entry page at your application side--a page that’s easily referred, with clear parameters, and structured customization options? In this article, we are exploring using F5 BIG-IP Access Policy Manager (BIG-IP APM) along side F5 Distributed Cloud Bot Defense (XC Bot Defense). Bot defense solutions' challenges Implementing bot defense solutions presents several challenges, each with unique considerations: Evolving Bot Tactics: Bot tactics constantly evolve, demanding adaptive detection methods to avoid both false positives (blocking legitimate users) and false negatives (allowing malicious bots through). Effective solutions must be highly flexible and responsive to these changes. Multi-Environment Integration: Bot defenses need to be deployed across diverse environments, including web, mobile, and APIs, adding layers of complexity to integration. Ensuring seamless protection across these platforms is critical. Balancing Security and Performance: Security measures must be balanced with performance to avoid degrading the user experience. A well-calibrated bot defense should secure the application without causing noticeable slowdowns or other disruptions for legitimate users. Data Privacy Compliance: Bot solutions often require extensive data collection, so adherence to data privacy laws is essential. Ensuring that bot defense practices align with regulatory standards helps avoid legal complications and maintains user trust. Resource Demands: Integrating bot defense with existing security stacks can be resource-intensive, both in terms of cost and skilled personnel. Proper configuration, monitoring, and maintenance require dedicated resources to ensure long-term effectiveness and efficiency. What F5 BIG-IP APM brings to the table? For teams working on bot defense solutions, several operational challenges can arise: Targeted Implementation Complexity: Identifying the correct application page for applying bot defense is often a complex process. Teams must ensure the solution targets the page containing the specific parameters they want to protect, which can be time-consuming and resource-intensive. Adaptation to Application Changes: Changes like upgrades or redesigns of the application page often require adjustments to bot defenses. These modifications can translate into significant resource commitments, as teams work to ensure the bot solution remains aligned with the new page structure. BIG-IP APM simplifies this process by making it easier to identify and target the correct page, reducing the time and resources needed for implementation. This allows technical and business resources to focus on more strategic priorities, such as fine-tuning bot defenses, optimizing protection, and enhancing application performance. Architecture and traffic flow In this section, let's explore how F5 XC Bot Defense and BIG-IP APM works together, let's list the prerequisites, F5 XC account with access to Bot Defense. APM licensed and provisioned. F5 BIG-IP min. v16.x for native connector integration. BIG-IP Self IP rechability to Internet to communicate with F5 XC, mainly to reach this domin (ibd-web.fastcache.net). Now, time to go quickly through our beloved TMM packet order. Due to the nature of BIG-IP APM Access events take precedence to the Bot enforcement, hence we will rely on simple iRule to apply Bot Defense on BIG-IP APM logon page. BIG-IP Bot Defense is responsible for inserting the JS and passing traffic from client to APM VS back and forth. BIG-IP APM responsible for logon page, MFA, API security or SSO integrations to manage client Access to the backend application. Solution Implementation Let's start now with our solution implementation, F5 Distributed Cloud Bot defense connector with BIG-IP was discussed in details in this Article F5 Distributed Cloud Bot Defense on BIG-IP 17.1 You will follow the steps mentioned in the article, with few changes mentioned below, API Hostname Web: ibd-web.fastcache.net For Per-session policies we use /my.policy as the target URL, while for Per-request and MFA implementation, you need to add /vdesk/*. Protection Pool - Web: Create pool with FQDN ibd-web.fastcache.net Virtual server, Create LTM virtual server to listen to incoming traffic, perform SSL offloading, HTTP profile and attach Bot Defense connector profile. Forwarding iRule, attach forwarding irule to the Bot virtual server. when CLIENT_ACCEPTED { ## Forwarding to the APM Virtual Server virtual Auth_VS } BIG-IP APM Policies, In this step we are creating two options of our deployment, Per-Session policy, where BIG-IP presents Logon page to the user. Per-Request policy, which services in case initial logon is handled at remote IdP and APM handles Per-request, MFA authentication or API security. Now, it's time to run the traffic and observe the results, From client browser, we can see the customer1.js inserted, From F5 XC Dashboard, Conclusion The primary goal of incorporating BIG-IP APM into the Bot Defense solution is to strike a balance between accelerating application development across web and mobile platforms while enforcing consistent organizational bot policies. By decoupling application login and authentication from the application itself, this approach enables a more streamlined, optimized, and secure bot defense implementation. It allows development teams to concentrate on application performance and feature enhancements, knowing that security measures are robustly managed and seamlessly integrated into the infrastructure. Related Content F5 Distributed Cloud Bot Defense on BIG-IP 17.1 Bot Detection and Security: Stop Automated Attacks 2024 Bad Bots Review339Views2likes1CommentMitigating OWASP API Security risks using BIG-IP
The introduction article covered the summary of OWASP API Security TOP 10 categories. As part of this article, we will focus on how we can protect our applications against some of these vulnerabilities using F5 BIG-IP Advanced Web Application Firewall (AdvancedWAF). Excessive Data Exposure: Problem Statement: As shown below in one of the demo application API’s, Personally Identifiable Information (PII) data like Credit Card Numbers (CCN) and Social Security Numbers (SSN) are available which are highly sensitive and so we must hide these details to prevent personal data exploits. Solution: By configuring DataGuard related WAF settings in BIG-IP as below, we are able to mask these numbers thereby preventing data breaches. If needed, we can update settings to block this vulnerability after which all incoming requests for this endpoint will be blocked. Injection: Problem Statement: Customer login pages without secure coding practices may have flaws and intruders will use them to exploit credential validation using different types of injections like SQLi, Command Injections, etc. In our demo application, attackers were able to bypass validation using SQLi (Username as “' OR true --” and any password) thereby getting administrative access as below: Solution: By configuring AdvancedWAF settings in BIG-IP and by enabling appropriate violation blocking settings, we are able to identify and block these types of known injection attacks as below. Improper Assets Management: Problem Statement: In our demo application, attackers have identified deprecated endpoints with a path starting with “/v1” which are currently not being maintained but are still available. Using these undocumented endpoints, attackers can get access to unwanted data causing loss of sensitive app information. Solution: To avoid this specific use case, we have come up with OpenAPI or Swagger files for the demo application, uploaded them to BIG-IP and have configured AdvancedWAF to allow only these known URL’s. If attackers try to access deprecated URL’s which are not available in OpenAPI files, the requests will be blocked. Insufficient Logging & Monitoring: Problem Statement: Appropriate logging and monitoring solutions play a pivotal role in identifying attacks and also in finding the root cause for any security issues. Without these solutions, applications are fully exposed to attackers and are completely blind in identifying details of users and resources being accessed. Solution: BIG-IP provides many dashboards like Statistics, Dos Visibility, Analytics, OWASP, etc for end-to-end visibility of every request being accessed and users have the ability to filter requests as per their requirements. By default, system provides different types of logging profiles and users can also create custom logging profiles. They can attach them to Load Balancers to track these data flows. BIG-IP also supports a reporting service to generate the timely reports as needed by users. Conclusion: As demonstrated above, F5 BIG-IP AdvancedWAF can be used as a mitigation solution to prevent different OWASP security attacks against our modern applications running API’s. Stay tuned for more OWASP videos. For getting started, check below links: BIG-IP AdvancedWAF OWASP API Security Top 10 BIG-IP VE Overview of BIG-IP2.3KViews4likes3CommentsF5 BIG-IP deployment with Red Hat OpenShift - keeping client IP addresses and egress flows
Controlling the egress traffic in OpenShift allows to use the BIG-IP for several use cases: Keeping the source IP of the ingress clients Providing highly scalable SNAT for egress flows Providing security functionalities for egress flows414Views1like1CommentOWASP Automated Threats - CAPTCHA Defeat (OAT-009)
Introduction: In this OWASP Automated Threat Article we'll be highlighting OAT-009 CAPTCHA Defeat with some basic threat information as well as a recorded demo to dive into the concepts deeper. In our demo we'll show how CAPTCHA Defeat works with Automation Tools to allow attackers to accomplish their objectives despite the presence of CAPTCHA's intended purpose of preventing unwanted automation. We'll wrap it up by highlighting F5 Bot Defense to show how we solve this problem for our customers. CAPTCHA Defeat Description: Completely Automated Public Turing test to tell Computers and Humans Apart (CAPTCHA) challenges are used to distinguish normal users from bots. Automation is used in an attempt to analyse and determine the answer to visual and/or aural CAPTCHA tests and related puzzles. Apart from conventional visual and aural CAPTCHA, puzzle solving mini games or arithmetical exercises are sometimes used. Some of these may include context-specific challenges. The process that determines the answer may utilise tools to perform optical character recognition, or matching against a prepared database of pre-generated images, or using other machine reading, or human farms. OWASP Automated Threat (OAT) Identity Number OAT-009 Threat Event Name CAPTCHA Defeat Summary Defining Characteristics Solve anti-automation tests. OAT-009 Attack Demographics: Sectors Targeted Parties Affected Data Commonly Misused Other Names and Examples Possible Symptoms Education Application Owners Authentication Credentials Breaking CAPTCHA High CAPTCHA solving success rate on fraudulent accounts Entertainment CAPTCHA breaker Suspiciously fast or fixed CAPTCHA solving times Financial CAPTCHA breaking Government CAPTCHA bypass Retail CAPTCHA decoding Social Networking CAPTCHA solver CAPTCHA solving Puzzle solving CAPTCHA Defeat Demo: In this demo we will be showing how it’s possible to leverage real human click farms via CAPTCHA solving services like 2CAPTCHA to bypass reCAPTCHA. We'll then have a look at the same attack with F5 Distributed Cloud Bot Defense protecting the application. In Conclusion: CAPTCHAs are only a speed bump for motivated attackers while introducing considerable friction for legitimate customers. Today, we’re at a point where bots solve CAPTCHAs more quickly and easily than most humans. Check out our additional resource links below to learn more. OWASP Links OWASP Automated Threats to Web Applications Home Page OWASP Automated Threats Identification Chart OWASP Automated Threats to Web Applications Handbook F5 Related Content Deploy Bot Defense on any Edge with F5 Distributed Cloud (SaaS Console, Automation) F5 Bot Defense Solutions F5 Labs "I Was a Human CATPCHA Solver" The OWASP Automated Threats Project How Attacks Evolve From Bots to Fraud Part: 1 How Attacks Evolve From Bots to Fraud Part: 2 F5 Distributed Cloud Bot Defense F5 Labs 2021 Credential Stuffing Report3.2KViews3likes1CommentF5 Distributed Cloud Bot Defense (Overview and Demo)
What is Distributed Cloud Bot Defense? Distributed Cloud Bot Defense protects your web properties from automated attacks by identifying and mitigating malicious bots. Bot Defense uses JavaScript and API calls to collect telemetry and mitigate malicious users within the context of the Distributed Cloud global network. Bot Defense can easily be integrated into existing applications in a number of ways. For applications already routing traffic through Distributed Cloud Mesh Service, Bot Defense is natively integrated into your Distributed Cloud Mesh HTTP load balancers. This integration allows you to configure the Bot Defense service through the HTTP load balancer's configuration in the Distributed Cloud Console. For other applications, connectors are available for several common insertion points that likely already exist in modern application architectures. Once Bot Defense is enabled and configured, you can view and filter traffic and transaction statistics on the Bot Defense dashboard in Distributed Cloud Console to see which users are malicious and how they’re being mitigated. F5 Distributed Cloud Bot Defense is an advanced add-on security feature included in the first launch of the F5 Web Application and API Protection (WAAP) service with seamless integration to protect your web apps and APIs from a wide variety of attacks in real-time. High Level Distributed Cloud Security Architecture Bot Defense Demo: In this technical demonstration video we will walk through F5 Distributed Cloud Bot Defense, showing you how quick and easy it is to configure, the insights and visibility you have while demonstrating a couple of real attacks with Selenium and Python browser automation. "Nature is a mutable cloud, which is always and never the same." - Ralph Waldo Emerson We might not wax that philosophically around here, but our heads are in the cloud nonetheless! Join the F5 Distributed Cloud user group today and learn more with your peers and other F5 experts. Hope you enjoyed this Distributed Cloud Bot Defense Overview and Demo. If there are any comments or questions please feel free to reach us in the comments section. Thanks! Related Resources: Deploy Bot Defense on any Edge with F5 Distributed Cloud (SaaS Console, Automation) Protecting Your Web Applications Against Critical OWASP Automated Threats Making Mobile SDK Integration Ridiculously Easy with F5 XC Mobile SDK Integrator JavaScript Supply Chains, Magecart, and F5 XC Client-Side Defense (Demo) Bots, Fraud, and the OWASP Automated Threats Project (Overview) Protecting Your Native Mobile Apps with F5 XC Mobile App Shield Enabling F5 Distributed Cloud Client-Side Defense in BIG-IP 17.1 Bot Defense for Mobile Apps in XC WAAP Part 1: The Bot Defense Mobile SDK F5 Distributed Cloud WAAP Distributed Cloud Services Overview Enable and Configure Bot Defense - F5 Distributed Cloud Service7.8KViews2likes0CommentsEvolving Financial Services and how to protect against sophisticated cyber threats
In an era where cyber threats evolve as rapidly as digital innovation, financial institutions face unprecedented challenges. Balancing security, performance, and compliance is no longer optional—it’s critical to survival. F5 empowers financial organizations to modernize their operations, safeguard customer trust, and stay ahead of competitors through a robust suite of solutions designed to mitigate risks, optimize performance, and ensure regulatory compliance. This article (first in a series) provides an overview of how F5 addresses the pressing challenges of modern financial services, from securing APIs to neutralizing sophisticated DDoS attacks. Let’s explore how F5 enables you to deliver fast, reliable, and secure digital experiences—every time. What to expect? Here's what to expect in this article, Technical articles covering related F5 solutions. Overview about how F5 products are able to handle different aspects in Financial services, F5 BIG-IP F5 Distributed Cloud NGINX Mitigating Application Vulnerability Financial institutions are prime targets for cybercriminals. F5’s layered security approach ensures resilience against evolving threats. Protecting against OWASP Top 10 vulnerabilities (e.g., injection attacks, broken authentication) evolved from just mere web protection, to web, API, LLM. You can explore examples of solutions across BIG-IP Advanced WAF, F5 Distributed Cloud, and NGINX which actively blocks exploits while maintaining application performance through those articles, OWASP top 10 Series F5 Hybrid Security Architectures for DevSecOps: F5's Distributed Cloud WAF and BIG-IP Advanced WAF BIG-IP Advanced WAF. NGINX App Protect. Encrypted Traffic Inspection BIG-IP SSL Orchestrator (SSLO) enables organizations to decrypt and inspect encrypted traffic without compromising speed, ensuring threats hidden in SSL/TLS traffic are neutralized, this series or articles shows different integration use cases with BIG-IP SSLO. Implementing SSL Orchestrator - High Level Considerations | DevCentral Bot Mitigation Bot attacks lead to fraud, operational disruptions, and reputational damage by enabling account takeovers, credential stuffing, and synthetic fraud. These attacks increase infrastructure costs, cause service downtime through DDoS, and expose institutions to regulatory penalties. Mitigating such attacks starts at multiple levels, below we are listing some of the helpful items on how to combat Bot attacks. An overview of F5 Distributed Cloud Bot Defense Ridiculously Easy Bot Protection: How to Use BIG-IP APM to Streamline Bot Defense Implementation | DevCentral Securing APIs and Third-Party Integrations APIs drive innovation but introduce risks like data breaches and downtime. how we can tackle API security depends on the applications need to be protected, whether we rely on BIG-IP, F5 Distributed Cloud or NGINX, or the Hybrid integration of different components, This series is about API security, will be a great start Use of NGINX Controller to Authenticate API Calls | DevCentral And to understand more about WAAP, What is WAAP?Community Learning Path: Web Application and API Protection (WAAP) Preventing DDoS Attacks DDoS attacks can cause a lot of impact to the business, whether it’s immediate impact by preventing the business from serving its customer or non-immediate one by impacting business brand image and ability to secure their customers and their data. DDoS attack vectors may vary from targeting application, bandwidth, resources like CPU, Memory or critical protocols like DNS, TCP or UDP. You can explore some interesting use cases on F5 DDoS mitigation through the below, NGINX App Protect. F5 Distributed Cloud DDoS Mitigation Service. DDoS Mitigation with F5 Distributed Cloud How to get started with F5 Distributed Cloud Managed Services How to easily add DoS protection to your F5 Distributed Cloup applications BIG-IP Advanced Firewall Manager. Explanation of F5 DDoS threshold modes | DevCentral Concept of F5 Device DoS and DoS profiles | DevCentral IP-Intelligence and IP-Shunning | DevCentral BIG-IP Advanced WAF. F5 Hybrid Security Architectures for DevSecOps: F5's Distributed Cloud WAAP Bot and DDoS Defense and BIG-IP Advanced WAF F5 BIG-IP Advanced WAF - DOS profile configuration options. | DevCentral F5 Hybrid Security Architectures for DevSecOps: F5's Distributed Cloud WAF and BIG-IP Advanced WAF Conclusion In this introduction article, we went through an overview of F5 solutions in Financial Services, in the following articles, we will dig a bit deeper with each solution. F5 not only helps with security but with maximizing performance as well. Related Content Testing the security controls for a notional FDX Open Banking deployment Decoding PCI-DSS v4.0: F5's Ridiculously Easy Guide to Technical Compliance Banking and Financial Services Why Top Financial Services Companies Rely on F5 NGINX App Protect. F5 Distributed Cloud DDoS Mitigation Service. DDoS Mitigation with F5 Distributed Cloud How to get started with F5 Distributed Cloud Managed Services How to easily add DoS protection to your F5 Distributed Cloup applications BIG-IP Advanced Firewall Manager. Explanation of F5 DDoS threshold modes | DevCentral Concept of F5 Device DoS and DoS profiles | DevCentral IP-Intelligence and IP-Shunning | DevCentral BIG-IP Advanced WAF. F5 Hybrid Security Architectures for DevSecOps: F5's Distributed Cloud WAAP Bot and DDoS Defense and BIG-IP Advanced WAF F5 BIG-IP Advanced WAF - DOS profile configuration options. | DevCentral F5 Hybrid Security Architectures for DevSecOps: F5's Distributed Cloud WAF and BIG-IP Advanced WAF Overview of WAAP Incidents What is WAAP?136Views0likes0CommentsXC HTTP loadbalancer returns "WAF like" error page even if WAF is disabled
Hi, I have been testing XC HTTP LB and I noticed that when service responds 403 I dont get original message, but something what looks like WAF error page, even with support id. When I try to search for support ID in XC console I fail, it is not there. Can somebody explain what is behind this, is HTTP LB pro-actively replacing non 2xx responses? And where I can find that support ID related log? ThanksSolved33Views0likes2Comments