application attacks
38 TopicsThe Top 10, Top Predictions for 2012
Around this time of year, almost everyone and their brother put out their annual predictions for the coming year. So instead of coming up with my own, I figured I’d simply regurgitate what many others are expecting to happen. Security Predictions 2012 & 2013 - The Emerging Security Threat – SANS talks Custom Malware, IPv6, ARM hacking and Social Media. Top 7 Cybersecurity Predictions for 2012 - From Stuxnet to Sony, a number of cyberattacks emerged in 2011 that experts have predicted for quite some time. Webroot’s top seven forecasts for the year ahead. Zero-day targets and smartphones are on this list. Top 8 Security Predictions for 2012 – Fortinet’s Security Predictions for 2012. Sponsored attacks and SCADA Under the Scope. Security Predictions for 2012 - With all of the crazy 2011 security breaches, exploits and notorious hacks, what can we expect for 2012? Websense looks at blended attacks, social media identity and SSL. Top 5 Security Predictions For 2012 – The escalating change in the threat landscape is something that drives the need for comprehensive security ever-forward. Firewalls and regulations in this one. Gartner Predicts 2012 – Special report addressing the continuing trend toward the reduction of control IT has over the forces that affect it. Cloud, mobile, data management and context-aware computing. 2012 Cyber Security Predictions – Predicts cybercriminals will use cyber-antics during the U.S. presidential election and will turn cell phones into ATMs. Top Nine Cyber Security Trends for 2012 – Imperva’s predictions for the top cyber security trends for 2012. DDoS, HTML 5 and social media. Internet Predictions for 2012 – QR codes and Flash TOP 15 Internet Marketing Predictions for 2012 – Mobile SEO, Social Media ROI and location based marketing. Certainly not an exhaustive list of all the various 2012 predictions including the doomsday and non-doomsday claims but a good swath of what the experts believe is coming. Wonder if anyone predicted that Targeted attacks increased four-fold in 2011. ps Technorati Tags: F5, cyber security, predictions, 2012, Pete Silva, security, mobile, vulnerabilities, crime, social media, hacks, the tube, internet, identity theft4.8KViews0likes1CommentSANS 20 Critical Security Controls
A couple days ago, The SANS Institute announced the release of a major update (Version 3.0) to the 20 Critical Controls, a prioritized baseline of information security measures designed to provide continuous monitoring to better protect government and commercial computers and networks from cyber attacks. The information security threat landscape is always changing, especially this year with the well publicized breaches. The particular controls have been tested and provide an effective solution to defending against cyber-attacks. The focus is critical technical areas than can help an organization prioritize efforts to protect against the most common and dangerous attacks. Automating security controls is another key area, to help gauge and improve the security posture of an organization. The update takes into account the information gleaned from law enforcement agencies, forensics experts and penetration testers who have analyzed the various methods of attack. SANS outlines the controls that would have prevented those attacks from being successful. Version 3.0 was developed to take the control framework to the next level. They have realigned the 20 controls and the associated sub-controls based on the current technology and threat environment, including the new threat vectors. Sub-controls have been added to assist with rapid detection and prevention of attacks. The 20 Controls have been aligned to the NSA’s Associated Manageable Network Plan Revision 2.0 Milestones. They have added definitions, guidelines and proposed scoring criteria to evaluate tools for their ability to satisfy the requirements of each of the 20 Controls. Lastly, they have mapped the findings of the Australian Government Department of Defence, which produced the Top 35 Key Mitigation Strategies, to the 20 Controls, providing measures to help reduce the impact of attacks. The 20 Critical Security Controls are: Inventory of Authorized and Unauthorized Devices Inventory of Authorized and Unauthorized Software Secure Configurations for Hardware and Software on Laptops, Workstations, and Servers Secure Configurations for Network Devices such as Firewalls, Routers, and Switches Boundary Defense Maintenance, Monitoring, and Analysis of Security Audit Logs Application Software Security Controlled Use of Administrative Privileges Controlled Access Based on the Need to Know Continuous Vulnerability Assessment and Remediation Account Monitoring and Control Malware Defenses Limitation and Control of Network Ports, Protocols, and Services Wireless Device Control Data Loss Prevention Secure Network Engineering Penetration Tests and Red Team Exercises Incident Response Capability Data Recovery Capability Security Skills Assessment and Appropriate Training to Fill Gaps And of course, F5 has solutions that can help with most, if not all, the 20 Critical Controls. ps Resources: SANS 20 Critical Controls Top 35 Mitigation Strategies: DSD Defence Signals Directorate NSA Manageable Network Plan (pdf) Internet Storm Center Google Report: How Web Attackers Evade Malware Detection F5 Security Solutions1.3KViews0likes0CommentsIPS or WAF Dilemma
As they endeavor to secure their systems from malicious intrusion attempts, many companies face the same decision: whether to use a web application firewall (WAF) or an intrusion detection or prevention system (IDS/IPS). But this notion that only one or the other is the solution is faulty. Attacks occur at different layers of the OSI model and they often penetrate multiple layers of either the stack or the actual system infrastructure. Attacks are also evolving—what once was only a network layer attack has shifted into a multi-layer network and application attack. For example, malicious intruders may start with a network-based attack, like denial of service (DoS), and once that takes hold, quickly launch another wave of attacks targeted at layer 7 (the application). Ultimately, this should not be an either/or discussion. Sound security means not only providing the best security at one layer, but at all layers. Otherwise organizations have a closed gate with no fence around it. Often, IDS and IPS devices are deployed as perimeter defense mechanisms, with an IPS placed in line to monitor network traffic as packets pass through. The IPS tries to match data in the packets to data in a signature database, and it may look for anomalies in the traffic. IPSs can also take action based on what it has detected, for instance by blocking or stopping the traffic. IPSs are designed to block the types of traffic that they identify as threatening, but they do not understand web application protocol logic and cannot decipher if a web application request is normal or malicious. So if the IPS does not have a signature for a new attack type, it could let that attack through without detection or prevention. With millions of websites and innumerable exploitable vulnerabilities available to attackers, IPSs fail when web application protection is required. They may identify false positives, which can delay response to actual attacks. And actual attacks might also be accepted as normal traffic if they happen frequently enough since an analyst may not be able to review every anomaly. WAFs have greatly matured since the early days. They can create a highly customized security policy for a specific web application. WAFs can not only reference signature databases, but use rules that describe what good traffic should look like with generic attack signatures to give web application firewalls the strongest mitigation possible. WAFs are designed to protect web applications and block the majority of the most common and dangerous web application attacks. They are deployed inline as a proxy, bridge, or a mirror port out of band and can even be deployed on the web server itself, where they can audit traffic to and from the web servers and applications, and analyze web application logic. They can also manipulate responses and requests and hide the TCP stack of the web server. Instead of matching traffic against a signature or anomaly file, they watch the behavior of the web requests and responses. IPSs and WAFs are similar in that they analyze traffic; but WAFs can protect against web-based threats like SQL injections, session hijacking, XSS, parameter tampering, and other threats identified in the OWASP Top 10. Some WAFs may contain signatures to block well-known attacks, but they also understand the web application logic. In addition to protecting the web application from known attacks, WAFs can also detect and potentially prevent unknown attacks. For instance, a WAF may observe an unusually large amount of traffic coming from the web application. The WAF can flag it as unusual or unexpected traffic, and can block that data. A signature-based IPS has very little understanding of the underlying application. It cannot protect URLs or parameters. It does not know if an attacker is web-scraping, and it cannot mask sensitive information like credit cards and Social Security numbers. It could protect against specific SQL injections, but it would have to match the signatures perfectly to trigger a response, and it does not normalize or decode obfuscated traffic. One advantage of IPSs is that they can protect the most commonly used Internet protocols, such as DNS, SMTP, SSH, Telnet, and FTP. The best security implementation will likely involve both an IPS and a WAF, but organizations should also consider which attack vectors are getting traction in the malicious hacking community. An IDS or IPS has only one solution to those problems: signatures. Signatures alone can’t protect against zero-day attacks for example; proactive URLs, parameters, allowed methods, and deep application knowledge are essential to this task. And if a zero-day attack does occur, an IPS’s signatures can’t offer any protection. However if a zero-day attack occurs that a WAF doesn’t detect, it can still be virtually patched using F5’s iRules until a there’s a permanent fix. A security conversation should be about how to provide the best layered defense. Web application firewalls like BIG-IP ASM protects traffic at multiple levels, using several techniques and mechanisms. IPS just reads the stream of data, hoping that traffic matches its one technique: signatures. Web application firewalls are unique in that they can detect and prevent attacks against a web application. They provide an in-depth inspection of web traffic and can protect against many of the same vulnerabilities that IPSs look for. They are not designed, however, to purely inspect network traffic like an IPS. If an organization already has an IPS as part of the infrastructure, the ideal secure infrastructure would include a WAF to enhance the capabilities offered with an IPS. This is a best practice of layered defenses. The WAF provides yet another layer of protection within an organization’s infrastructure and can protect against many attacks that would sail through an IPS. If an organization has neither, the WAF would provide the best application protection overall. ps Related: 3 reasons you need a WAF even if your code is (you think) secure Web App Attacks Rise, Disclosed Bugs Decline Next-Gen Firewalls Make Old Arguments New Again Why Developers Should Demand Web App Firewalls. Too Dangerous to Enter? Asian IT security study finds enterprises revising strategy to accommodate new IT trends Protecting the navigation layer from cyber attacks OWASP Top Ten Project F5 Case Study: WhiteHat Security Technorati Tags: F5, PCI DSS, waf, owasp, Pete Silva, security, ips, vulnerabilities, compliance, web, internet, cybercrime, web application, identity theft1.1KViews0likes1CommentBlocking Session Management attacks on ASM
hello, We recently came to know the F5 ASM is not blocking session management attacks which discloses the admin username and password on reply. May I know if this has something to do with attack signatures or through dynamic parameters. Regards, Akhtar574Views0likes8CommentsICSA Certified Network Firewall for Data Centers
The BIG-IP platform is now ICSA Certified as a Network Firewall. Internet threats are widely varied and multi-layered. Although applications and their data are attackers’ primary targets, many attackers gain entry at the network layer. Internet data centers and public-facing web properties are constant targets for large-scale attacks by hacker/hactivist communities and others looking to grab intellectual property or cause a service outage. Organizations must prepare for the normal influx of users, but they also must defend their infrastructure from the daily barrage of malicious users. Security administrators who manage large web properties are struggling with security because traditional firewalls are not meeting their fundamental performance needs. Dynamic and layered attacks that necessitate multiple-box solutions, add to IT distress. Traditional firewalls can be overwhelmed by their limited ability to scale under a DDoS attack while keeping peak connection performance for valid users, which renders not only the firewalls themselves unresponsive, but the web sites they are supposed to protect. Additionally, traditional firewalls’ limited capacity to interpret context means they may be unable to make an intelligent decision about how to deliver the application while also keeping services available for valid requests during a DDoS attack. Traditional firewalls also lack specialized capabilities like SSL offload, which not only helps reduce the load on the web servers, but enables inspection, re-encryption, and certificate storage. Most traditional firewalls lack the agility to react quickly to changes and emerging threats, and many have only limited ability to provide new services such as IP geolocation, traffic redirection, traffic manipulation, content scrubbing, and connection limiting. An organization’s inability to respond to these threats dynamically, and to minimize the exposure window, means the risk to the overall business is massive. There are several point solutions in the market that concentrate on specific problem areas; but this creates security silos that only make management and maintenance more costly, more cumbersome, and less effective. The BIG-IP platform provides a unified view of layer 3 through 7 for both general and ICSA required reporting and alerts, as well as integration with SIEM vendors. BIG-IP Local Traffic Manager offers native, high-performance firewall services to protect the entire infrastructure. BIG-IP LTM is a purpose-built, high-performance Application Delivery Controller designed to protect Internet data centers. In many instances, BIG-IP LTM can replace an existing firewall while also offering scale, performance, and persistence. Performance: BIG-IP LTM manages up to 48 million concurrent connections and 72 Gbps of throughput with various timeout behaviors, buffer sizes, and more when under attack. Protocol security: The BIG-IP system natively decodes IPv4, IPv6, TCP, HTTP, SIP, DNS, SMTP, FTP, Diameter, and RADIUS. Organizations can control almost every element of the protocols they’re deploying. DDoS prevention capabilities: An integrated architecture enables organizations to combine traditional firewall layers 3 and 4 with application layers 5 through 7. DDoS mitigations: The BIG-IP system protects UDP, TCP, SIP, DNS, HTTP, SSL, and other network attack targets while delivering uninterrupted service for legitimate connections. SSL termination: Offload computationally intensive SSL to the BIG-IP system and gain visibility into potentially harmful encrypted payloads. Dynamic threat mitigation: iRules provide a flexible way to enforce protocol functions on both standard and emerging or custom protocols. With iRules, organizations can create a zero day dynamic security context to react to vulnerabilities for which an associated patch has not yet been released. Resource cloaking and content security: Prevent leaks of error codes and sensitive content. F5 BIG-IP LTM has numerous security features so Internet data centers can deliver applications while protecting the infrastructure that supports their clients and, BIG-IP is now ICSA Certified as a Network Firewall. ps Resources: F5’s Certified Firewall Protects Against Large-Scale Cyber Attacks on Public-Facing Websites F5 BIG-IP Data Center Firewall – Overview BIG-IP Data Center Firewall Solution – SlideShare Presentation High Performance Firewall for Data Centers – Solution Profile The New Data Center Firewall Paradigm – White Paper Vulnerability Assessment with Application Security – White Paper Challenging the Firewall Data Center Dogma Technorati Tags: F5, big-ip, virtualization, cloud computing, Pete Silva, security, icsa, iApp, compliance, network firewall, internet, TMOS, big-ip, vCMP523Views0likes1CommentThe Exec-Disconnect on IT Security
Different Chiefs give Different Security Stories. A recent survey shows that there is a wide gap between CEOs and Chief Security Officers when it comes to the origin and seriousness of security threats. They differ on how they view threats to IT Infrastructure and remain far apart on how to best address an issue that according to analyst reports, costs organizations more than $30 billion annually. The survey of 100 CEOs and 100 CISO (or other C-levels with security responsibility), shows that the discrepancy is often due to lack of communication. 36% of CEOs said that they never get a security report from their CISO and only 27% receive updates on a regular basis. Is it the CISO that doesn’t report back or the CEO that is not interested? Let’s look at some more data. The CISO felt that the biggest threat was from internal (their employees) due to lack of education and attention while the CEO felt that the biggest threat was from the outside, such as phishing attacks. Thus, 61% of CEOs said they did have enough time and resources to adequately train the staff on how to mitigate threats while Only 27% of CISOs felt the same. It’s opposite day. When asked if their IT systems were ‘definitely’ or ‘probably’ under attack without their knowledge, 58% of CISOs said yes while only 26% of CEOs agreeing. The chasm grows. What percentage of each, do you think, said they were very concerned about their IT systems getting hacked? 30 seconds on the clock, please. Don’t peek. Only 15% of CEOs and ‘only’ 62% of CISOs are anxious about breaches. 15%? That’s it? Maybe they have great confidence in their security team…or, they don’t have the information. 65% of CEOs admitted to not having the sufficient data needed to interpret how security threats translate to overall business risk. Wow, the very day-to-day operations. Granted, the CEO is further removed from the specific threats and how they are handled but there is clearly a distance between how each views threats and the company’s ability to successfully mitigate them. Lack of interest or lack of understanding/information? Probably both. An old adage was that a great boss hired people who were good at the things he/she wasn’t so good at. Surround yourself with those who know their areas better. Or maybe there is a culture that you don’t alert the top unless it’s dire, critical or unstoppable. Communication or interest, it is evident that the C-suite isn’t really talking about these critical business issues especially when 3 times as many CEOs worried about losing their jobs following an attack than did CISOs. ps References SECURITY: A LACK OF CEO INSIGHT OR CEO INTEREST? CEOs Lack Visibility Into Origin and Seriousness of Security Threats Talking About Security Bores the Boss, Survey Shows Myth or Fact? Debunking 15 of the Biggest Information Security Myths The CEO/CISO Disconnect Infographic375Views0likes0CommentsCyber Security Attack Mitigations with BIG-IP features
ArvinF is back to share mitigation options for Cyber Security Attacks with BIG-IP features! This article aim to bring these attack mitigations options much more visible and available. Cyber Security Attacks There are many types of Cyber Security Attacks. I will limit to the types that BIG-IP mostly encounter. Network Attacks Network attacks are aimed at compromising, disrupting, or gaining unauthorized access to an organization’s internal or external network, usually targeting communication protocols, devices, or services within the network. Web Application Attacks Web application attacks target weaknesses in web-based applications to gain unauthorized access to data, manipulate functionality, or exploit users. Web Application and Network Attacks are common and these can affect the Web application and network traffic processed thru F5 Virtual Servers and in some cases, affect the availability of the BIG-IP device itself. Malware Attacks Malware (malicious software) includes viruses, worms, Trojans, ransomware, and spyware designed to damage or gain control over a computer system. BIG-IP Cyber Security Attacks Mitigations But First, Finding "Help" I have always found it helpful to review the Help Tab of the feature and configuration. While logged in on the BIG-IP Configuration utility for the specific BIG-IP Application Security Manager (BIG-IP ASM/Adv WAF) or BIG-IP Advanced Firewall Manager (BIG-IP AFM) menu, the "Help" tab contains details of the relevant configurations. If you hit Launch, it opens on a new window. You can also click on Expand All to view each options documentation. On to the mitigation options.. Bot Defense Profile We have here the description of the Bot Defense Profile Templates where it provides details of each template - Relaxed, Balanced and Strict - on the Verification and Mitigation it will provide. Take note of the Relaxed template Browser verification as it uses "Challenge-Free Verification". This means clients that do not support Javascript such as mobile applications will not be prevented due to verification and is less intrusive. From K42323285: Overview of the unified Bot Defense profile https://my.f5.com/manage/s/article/K42323285 Challenge-Free Verification—The default value when Profile Template is set to Relaxed. The system performs header-based verification but does not perform JavaScript verification. The Balanced and Strict offers more stringent client verification. For the mitigation from Bot Defense to take effect, it should be in blocking mode. Relaxed Mode Defines a permissive security policy that performs basic non-intrusive verification of Browsers, strong verification of Mobile Apps using Anti-Bot Mobile Security SDK, blocks Malicious Bots and allows all other clients. Malicious Bots are detected mostly by using bot signatures. The mode provides basic protection level with very low risk of false positives. Balanced Mode Defines a moderate security policy that performs advanced verification of Browsers, strong verification of Mobile Apps using Anti-Bot Mobile Security SDK, blocks Malicious Bots, initiates CAPTCHA challenge for Suspicious Browsers, limits the total request rate produced by Unknown bots and allows Trusted and Untrusted Bots. Malicious Bots and Suspicious Browsers are identified by using both anomaly detection algorithms and bot signatures. This mode provides an advanced protection level with reduced latency impact because Browser verification is performed by injecting challenge in HTTP response. Strict Mode Defines a strict security policy that performs advanced verification of Browsers, strong verification of Mobile Apps using Anti-Bot Mobile Security SDK, and blocks all bots except Trusted Bots. This mode provides the most advanced and strict protection level using all capabilities of Bot Defense. Browser clients are not allowed to access unless they pass proactive verification. Mobile clients security access requires the use of Anti-Bot Mobile SDK. Here is a sample log for Bot Defense it is detecting a client that is classified as a "Suspicious Browser". The Bot Defense Profile that detected this bot request was configured with the "Relaxed" profile template. Here are sample Bot Traffic detected and actioned by a Bot Defense profile. Notice the Alarm and Block events. A detected "Suspicious Browser" is not blocked but generates an Alarm. A "malicious bot" is blocked DoS Protection Profile For the DoS Protection profiles, detection and mitigation can be configured thru TPS , Behavioral and Stress-based. The threshold for each configuration can be configured with Manual or Automatic thresholds. Manually configured TPS based detection looks at defined conditions and thresholds by Source IP, Device ID, Geolocation, URL and Site Wide and when exceeded, configured mitigation will take effect. The DoS Protection profile should be in Blocking mode for the mitigation to take effect. When using automatic threshold configuration in BIG-IP ASM/Adv WAF DoS Protection profile, the system sets the values using a wide range to begin with, then calculates the values using 7 days of historical data and sets threshold values to the highest levels during normal activity (to minimize false positives). Reference: K000138529: Understanding Automatic Threshold in BIG-IP ASM/Adv WAF DoS Protection profile The by Device ID detection option uses JavaScript to detect clients and requires a Bot Defense profile with Device ID mode to be configured. Here is the description of conditions from the TPS based detection configuration ================== Consider an IP as an attacking entity if either of the following conditions occur: Relative Threshold: TPS increased by: <traffic percentage> and reached at least <TPS> transactions per second OR Absolute Threshold: TPS reached: <TPS> transactions per second ================== Here is the description of conditions when TPS based detection is configured with Automatic Threshold ============== Consider an IP as an attacking entity if TPS reached an auto-calculated threshold in range <minimum TPS> - <upper limit TPS> transactions per second ============== For environments that have a mix of web and mobile application clients, only the Request Blocking option does not use Javascript to mitigate attacking clients. The Behavioral and Stress-based detection threshold can also be configured as Manual or Automatic and have the same configuration options TPS based detection. The difference is Server Stress is a requirement in this detection mode. Ensure that the DoS protection profile is in blocking mode. From the Online Help ============ Behavioral & Stress-based Detection In this area you can configure the system to prevent DoS attacks based on the server’s health condition. An attack is detected if the system finds the server to be under stress and either of the TPS thresholds are crossed. =========== Similar mitigation options are also available. Another section of Behavioral & Stress-based Detection is the Behavioral Detection and Mitigation where Bad Actor detection and mitigation can be configured From the Online Help ========= Bad actors behavior detection: Enables traffic behavior, server's capacity learning, and anomaly detection. Request signatures detection: Enables signatures detection. Use TLS fingerprints identification: Allows the system to distinguish between bad and good actors behind the same IP (NAT). When disabled (default), any attack behind the NAT treats all users behind the NAT as attackers. ========= Do take note of Request signatures detection and Use TLS fingerprints identification as these options are useful in identifying attacking clients behind a NAT device by way of TLS fingerprint and clients with specific HTTP signatures. Here is the Bad actors behavior detection mitigation descriptions. Review the protection levels and use what is appropriate as per your needs. Mitigation: No mitigation: Learns and monitors traffic behavior, but no action is taken. Conservative protection: If «Bad actors detection» enabled, slows down and rate limits requests from anomalous IP addresses based on its anomaly detection confidence and the server's health. If «Request signatures detection» enabled, blocks requests that match the attack signatures. Standard protection: If «Bad actors detection» enabled, slows down requests from anomalous IP addresses based on its anomaly detection confidence and the server's health. Rate limits requests from anomalous IP addresses and, if necessary, rate limits all requests based on the servers health. Limits the number of concurrent connections from anomalous IP addresses and, if necessary, limits the number of all concurrent connections based on the server's health. If «Request signatures detection» enabled, blocks requests that match the attack signatures. Aggressive protection: If «Bad actors detection» enabled, slows down requests from anomalous IP addresses based on its anomaly detection confidence and the server's health. Rate limits requests from anomalous IP addresses and, if necessary, rate limits all requests based on the servers health. Limits the number of concurrent connections from anomalous IP addresses and, if necessary, limits the number of all concurrent connections based on the server's health. Proactively performs all protection actions (even before an attack). Increases the impact of the protection techniques. If «Request signatures detection» enabled, blocks requests that match the attack signatures. Increases the impact of blocked requests. Regarding Server Stress There are a couple of locations where Server Stress can be observed. A spike in Server Stress will trigger Behavioral and Stress-based DoS detection and mitigation if configured. Protected Objects List This is under Security ›› DoS Protection : Protected Objects : Protected Objects List This menu is available when you have BIG-IP AFM provisioned in this sample, notice the Server Stress is at 100/100 - this means the backend server is Stressed and the latency of Server response is High. The protected object's attack status is "red" signaling an attack is ongoing and being mitigated. On this sample, the detected attack is ongoing and the server stress value has gone down to 55/100. The request rate also shows the connections per second and has gone down. Behavioral DoS Dashboard Under the Statistics menu, click on Dashboard Select Behavioral DoS in the Dashboard options Review Server Stress Here are sample DoS Application Events generated thru a DoS protection profile TPS Based detection and mitigation Behavioral detection and mitigation It provides insight which DoS "Threshold condition" was exceeded and what "Mitigation" was applied to the detected "Attack (Attack ID)" also noting the start and end of the attack. Inspecting these events will help in figuring out a threshold you may apply. DoS Dashboard under Security Reporting When looking for details of the attack, the DoS Dashboard under Security Reporting provides insight on the detected attack and related entities and statistics. In this sample, the detected attack was triggered thru App Behavioral and mitigated with Behavioral mitigation In this sample, notice the "transaction outcomes" shows "Blocked Bad Actor" which means the transactions were blocked by Bad Actor detection and mitigation configuration in the DoS protection profile. IP reputation , IP Intelligence license - must have! During DDoS attacks, it is very likely that the some of the source IP addresses will have bad IP reputation. Having the IP Intelligence license available in the BIG-IP will provide mitigation for matched IP addresses. IP Intelligence can be used in BIG-IP LTM (iRules and LTM Policy), AFM (IP Intelligence Policy) and ASM/Adv WAF (Security Policy) configurations. Refer to the following links on sample iRule configurations. https://clouddocs.f5.com/api/irules/IP__reputation.html https://clouddocs.f5.com/api/irules/IP__intelligence.html Note that the IP intelligence feature requires an add-on license. Contact your F5 or Partner salesperson for details on ordering the license. Cyber Security Attack Scenarios and Recommendations As introduced earlier, here are Cyber Security Attack Scenarios that BIG-IP deployments encounter and corresponding mitigation options and configuration recommendations. These sample scenarios will be helpful in finding initial mitigation options using BIG-IP features should it match your deployment configuration. Scenario: DDoS attack on a F5 Virtual Server fronting a web application and the BIG-IP have ASM/Adv WAF license. There are no DoS protection and Bot Defense profile configured on the Virtual Server. Recommendations: For the DoS Protection profile, configure TPS and Behavioral and Stress based Detection. Set Detection Thresholds and mitigations for both options as per your needs. You can monitor the traffic pattern on the Virtual Server you are protecting. Consider the clients that access the web application. If the clients are web browsers and mobile application users, use non Javascript (JS) based detection and mitigations. This will allow mobile application clients that do not support Javascript challenges to access the protected web application and ensure they are not blocked by Javascript challenges or mitigations. Another detection method is thru Bad Actor detection configuration under Behavioral and Stress Based Detection menu. This feature slows down and rate limits requests from anomalous IP addresses based on its anomaly detection confidence and the server's health. Automatic Threshold can also be configured for TPS based detection. For more information on HTTP enabled DoS Protection configured with Automatic Threshold, refer to K000138529: Understanding Automatic Threshold in BIG-IP ASM/Adv WAF DoS Protection profile For the Bot Defense profile, configure the Relaxed Profile template. This does not use Javascript challenges for detecting end clients and will allow mobile application clients that do not support Javascript to access the protected web application. Configure a logging profile that logs remotely to trusted logging server for DoS protection and Bot Defense events. Scenario: DDoS attack on a F5 Forwarding IP or Performance Layer 4 Virtual Server processing network traffic. Recommendations: Ensure DoS mitigations are available to protect the network traffic. BIG-IP AFM have DoS Attack types for Network Based DoS and can be set to Mitigate to detect and mitigate/drop excess packets for the matched attack type. These DoS Attack types can be configured with Fully Manual or Fully Automatic threshold. You should set detection and mitigation thresholds as per your needs. It is important to review traffic statistics and pattern on the Virtual Server you are protecting. AFM threshold values are in EPS - Events Per Second, synonymous to Packets Per Second and the observed traffic pattern can be the basis of the manually configured thresholds. Another method of defining the threshold is thru "Threshold Sensitivity" where the BIG-IP system CPU usage and traffic pattern is the basis. When AFM DoS attack types are configured with Fully Automatic, it uses the "Threshold Sensitivity" configuration. For BIG-IP Advanced Firewall Manager (AFM) systems protecting networks against Distributed Denial of Service (DDoS) attacks, DoS Auto Threshold sensitivity can be configured for system-wide thru Device Protection and per DoS Protection Profile. A setting of High will be more sensitive to changes in BIG-IP System CPU usage and traffic. A setting of Medium is the default configuration. A setting of Low will be less sensitive to changes in BIG-IP System CPU usage and traffic. From the BIG-IP Configuration utility, navigate to: For System Wide: Security ›› DoS Protection : Device Protection per DoS Protection Profile: Security ›› DoS Protection : Protection Profiles .. select the specific profile Reference: K000141430: Configuring BIG-IP AFM DoS Protection Threshold Sensitivity https://my.f5.com/manage/s/article/K000141430 Scenario: DNS DDoS attack on F5 DNS listener Virtual Server Recommendations: BIG-IP AFM have DNS Attack types to detect and mitigate DNS DDoS attacks. If your BIG-IP does not have BIG-IP AFM licensed, it would be beneficial for the DNS service processed thru the F5 DNS listener VS to have mitigation options available from the DNS Attack types in the AFM DoS device or DNS enabled protection profile. Configure thresholds as per your needs. Here is a sample configuration from a lab device where DNS A Query Attack type in Device Protection is configured in Mitigate state and Fully Manual detection and mitigation thresholds. Bad Actor Detection can also be configured with thresholds. It is also possible to configure it for Fully Automatic threshold and will be dependent on the Threshold Sensitivity configuration. Scenario: DDoS attack on F5 Virtual Server and attacking IP addresses needs to be blocked Recommendations: BIG-IP AFM has Network Firewall Policy and rules where it can be configured to match a source address list and drop its traffic. This can also be done thru iRules, however, AFM firewall rule configuration is a native feature and is built for such operations. The F5 SIRT created a playbook for HTTP brute force mitigation and the LTM mitigation options includes such configurations should you decide to use iRules and BIG-IP LTM features. HTTP Brute Force Mitigation Playbook: BIG-IP LTM Mitigation Options for HTTP Brute Force Attacks - Chapter 3 HTTP Brute Force Mitigation Playbook: BIG-IP LTM Mitigation Options for HTTP Brute Force Attacks - Chapter 3 | DevCentral F5 also have K30534815: Attack mitigation matrix using F5 security products and services which lists existing F5 Support articles for attack mitigation. https://my.f5.com/manage/s/article/K30534815 During DDoS attacks, it is very likely that the some of the source IP addresses will have bad IP reputation, it will be beneficial to have IP Intelligence license available and use it in BIG-IP LTM (iRules and LTM Policy), AFM (IP Intelligence Policy) and ASM/Adv WAF (Security Policy) configurations. Refer to the following links on sample iRule configurations. https://clouddocs.f5.com/api/irules/IP__reputation.html https://clouddocs.f5.com/api/irules/IP__intelligence.html Note that the IP intelligence feature requires an add-on license. Contact your F5 or Partner salesperson for details on ordering the license. Scenario: BIG-IP device is suspected to be compromised. Recommendations: BIG-IP can be affected by malware and it finds it's way to it by exposing the BIG-IP management and self (self-IP) IP addresses and configured with insecure or easy to guess BIG-IP user password. BIG-IP product had previous Critical CVEs where authentication was not needed to exploit the vulnerability. F5 has the article K11438344: Considerations and guidance when you suspect a security compromise on a BIG-IP system to provide guidance on handling suspected compromised BIG-IP devices. https://my.f5.com/manage/s/article/K11438344 To minimize the attack surface of a BIG-IP device against CVEs and unauthorized access, ensure that only trusted authenticated users and networks have access to the BIG-IP management and self (self-IP) IP addresses and the BIG-IP device is running the latest BIG-IP software version. Do review the "Major Release and Long-Term Stability Release versions supported with active software development" of K5903: BIG-IP software support policy as it notes BIG-IP 15.1.x version reaches "End of Technical Support" this December 31, 2024. Note: For BIG-IP Next (BIG-IP 20.x and later), refer to BIG-IP Next software support policy. Major Release and Long-Term Stability Release versions First customer ship End of Software Development End of Technical Support Latest maintenance release 17.1.x March 14, 2023 March 31, 2027 March 31, 2027 17.1.1 16.1.x July 7, 2021 July 31, 2025 July 31, 2025 16.1.5 15.1.x December 11, 2019 December 31, 2024 December 31, 2024 15.1.10 K5903: BIG-IP software support policy https://my.f5.com/manage/s/article/K5903 F5 Distributed Cloud "F5 Distributed Cloud Services are SaaS-based security, networking, and application management services that enable customers to deploy, secure, and operate their applications in a cloud-native environment wherever needed–data center, multi-cloud, or the network or enterprise edge." https://www.f5.com/products/distributed-cloud-services F5 Distributed Cloud have many mitigation options for DDoS attacks. Volumetric DDoS can be handled by F5 Distributed Cloud DDoS Mitigation Service. F5 Distributed Cloud Bot Defense mitigates complex bot attacks. It provides integration option with your mobile application so it can be properly classified and detected as a trusted client. see Making Mobile SDK Integration Ridiculously Easy with F5 XC Mobile SDK Integrator https://www.f5.com/products/distributed-cloud-services/bot-defense https://www.f5.com/products/distributed-cloud-services/l3-and-l7-ddos-attack-mitigation Conclusion The Cyber Security Attack Scenarios and recommendations using BIG-IP features shared are not exhaustive. There are more complex environments and scenarios that BIG-IP deployments may have opportunity to mitigate network and application attack traffic and it is important that the appropriate BIG-IP licenses are available so the relevant modules can be provisioned and related features and configuration can be enabled. This will help your environment's network and application traffic to be resilient against DDoS attacks when BIG-IP is properly licensed, positioned and configured. I hope the sample configuration, logs and configuration help details have been useful and helpful as you consider the BIG-IP features mitigation options and improve your network, application and BIG-IP device security posture. Until next time! The F5 SIRT creates security-related content posted here in DevCentral, sharing the team’s security mindset and knowledge. Feel free to view the articles that are tagged with the following: F5 SIRT series-F5SIRT-this-week-in-security TWIS359Views2likes0CommentsWhere Do You Wear Your Malware?
The London Stock Exchange, Android phones and even the impenetrable Mac have all been malware targets recently. If you’re connected to the internet, you are at risk. It is no surprise that the crooks will go after whatever device people are using to conduct their life – mobile for example, along with trying to achieve that great financial heist….’if we can just get this one big score, then we can hang up our botnets and retire!’ Perhaps Homer Simpson said it best, ‘Ooh, Mama! This is finally really happening. After years of disappointment with get-rich-quick schemes, I know I'm gonna get Rich with this scheme...and quick!’ Maybe we call this the Malware Mantra! Malware has been around for a while, has changed and evolved over the years and we seem to have accepted it as part of the landmines we face when navigating the internet. I would guess that we might not even think about malware until it has hit us….which is typical when it comes to things like this. Out of sight, Out of mind. I don’t think ‘absence makes the heart grow fonder’ works with malware. We certainly take measures to guard ourselves, anti-virus/firewall/spoof toolbars/etc, which gives us the feeling of protection and we click away thinking that our sentinels will destroy anything that comes our way. Not always so. It was reported that the London Stock Exchange was delivering malvertising to it’s visitors. The LSE site itself was not infected but the pop-up ads from the site delivered some nice fake warnings saying the computer was infected and in danger. This is huge business for cybercriminals since they insert their code with the third-party advertiser and never need to directly attack the main site. Many sites rely on third-party ads so this is yet another area to be cautious of. One of the things that Web 2.0 brought was the ability to deliver or feed other sites with content. If you use NoScript with Firefox on your favorite news site (or any major site for that matter), you can see the amazing amount of content coming from other sources. Sometimes, 8-10 or more domains are listed as content generators so be very careful as to which ones you allow. With the success of the Android platform, it also becomes a target. This particular mobile malware looks and acts like the actual app. The problem is that it also installs a backdoor to the phone and asks for additional permissions. Once installed, it can connect to a command server and receive instructions; including sending text messages, add URL’s/direct a browser to a site along with installing additional software. The phone becomes part of a botnet. Depending on your contract, all these txt can add up leading to a bill that looks like you just bought a car. In fact, Google has just removed 21 free apps from the Android Market saying its malware designed to get root access to the user’s device. They were all masquerading as legitimate games and utilities. If you got one of these, it’s highly recommended that you simply take your phone back to the carrier and swap it for a new one, since there’s no way of telling what has been compromised. As malware continues to evolve, the mobile threat is not going away. This RSA2011 recap predicts mobile device management as the theme for RSA2012. And in related news, F5 recently released our Edge Portal application for the Android Market – malware free. Up front, I’m not a Mac user. I like them, used them plenty over the years and am not opposed to getting one in the future, just owned Windows devices most of my life. Probably due to the fact that my dad was an IBM’r for 30 years. Late last week, stories started to appear about some beta malware targeting Macs. It is called BlackHole RAT. It is derived from a Windows family of trojans and re-written to target Mac. It is spreading through torrent sites and seems to be a proof-of-concept of what potentially can be accomplished. Reports say that it can do remote control of an infected machine, open web pages, display messages and force re-boots. There is also some disagreement around the web as to the seriousness of the threat but despite that, criminals are trying. Once we all get our IPv6 chips installed in our earlobes and are able to take calls by pulling on our ear, a la Carol Burnett style, I wonder when the first computer to human virus will be reported. The wondering is over, it has already happened. ps Resources: London Stock Exchange site shows malicious adverts When malware messes with the markets Android an emerging target for cyber criminals Google pulls 21 apps in Android malware scare More Android mobile malware surfaces in third-party app repositories Infected Android app runs up big texting bills Ignoring mobile hype? Don't overlook growing mobile device threats "BlackHole" malware, in beta, aims for Mac users Mac Trojan uses Windows backdoor code I'll Believe Mac malware is a problem when I see it BlackHole RAT is Really No Big Deal 20 years of innovative Windows malware Edge Portal application on Android Market355Views0likes0Comments5 Stages of a Data Breach
One thing I’ve noticed over the last couple years is that there are 5 Stages of a Data Breach: Denial: We do not believe these attacks breached our critical servers. Anger: We want to make it clear that we take security seriously! Bargaining: We’d like to offer our affected customers a credit monitoring service. Depression: We wish we could have done things differently. Acceptance: Well, it just shows that no one is safe from hackers. ps Technorati Tags: F5, cyber-crime, trojan, Pete Silva, security, business, education, 5 stages, cyber war, hackers, breach, verisign, internet, security, privacy,344Views0likes0CommentsDefense in Depth in Context
In the days of yore, a military technique called Defense-in-Depth was used to protect kingdoms, castles, and other locations where you might be vulnerable to attack. It's a layered defense strategy where the attacker would have to breach several layers of protection to finally reach the intended target. It allows the defender to spread their resources and not put all of the protection in one location. It's also a multifaceted approach to protection in that there are other mechanisms in place to help; and it's redundant so if a component failed or is compromised, there are others that are ready to step in to keep the protection in tack. Information technology also recognizes this technique as one of the 'best practices' when protecting systems. The infrastructure and systems they support are fortified with a layered security approach. There are firewalls at the edge and often, security mechanisms at every segment of the network. Circumvent one, the next layer should net them. There is one little flaw with the Defense-in-Depth strategy - it is designed to slow down attacks, not necessarily stop them. It gives you time to mobilize a counter-offensive and it's an expensive and complex proposition if you are an attacker. It's more of a deterrent than anything and ultimately, the attacker could decide that the benefits of continuing the attack outweigh the additional costs. In the digital world, it is also interpreted as redundancy. Place multiple iterations of a defensive mechanism within the path of the attacker. The problem is that the only way to increase the cost and complexity for the attacker is to raise the cost and complexity of your own defenses. Complexity is the kryptonite of good security and what you really need is security based on context. Context takes into account the environment or conditions surrounding an event to make an informed decision about how to apply security. This is especially true when protecting a database. Database firewalls are critical components to protecting your valuable data and can stop a SQL Injection attack, for instance, in an instant. What they lack is the ability to decipher contextual data like userid, session, cookie, browser type, IP address, location and other meta-data of who or what actually performed the attack. While it can see that a particular SQL query is invalid, it cannot decipher who made the request. Web Application Firewalls on the other hand can gather user side information since many of its policy decisions are based on the user's context. A WAF monitors every request and response from the browser to the web application and consults a policy to determine if the action and data are allowed. It uses such information as user, session, cookie and other contextual data to decide if it is a valid request. Independent technologies that protect against web attacks or database attacks are available, but they have not been linked to provide unified notification and reporting. Now imagine if your database was protected by a layered, defense-in-depth architecture along with the contextual information to make informed, intelligent decisions about database security incidents. The integration of BIG-IP ASM with Oracle's Database Firewall offers the database protection that Oracle is known for and the contextual intelligence that is baked into every F5 solution. Unified reporting for both the application firewall and database firewall provides more convenient and comprehensive security monitoring. Integration between the two security solutions offers a holistic approach to protecting web and database tiers from SQL injection type of attacks. The integration gives you the layered protection many security professionals recognize as a best practice, plus the contextual information needed to make intelligent decisions about what action to take. This solution provides improved SQL injection protection to F5 customers and correlated reporting for richer forensic information on SQL injection attacks to Oracle database customers. It’s an end-to-end web application and database security solution to protect data, customers, and their businesses. ps Resources: F5 Joins with Oracle to Offer Enhanced Security for Web-Based Database Applications Security for Web-Based Database Applications Enhanced With F5 and Oracle Product Integration Using Oracle Database Firewall with BIG-IP ASM F5 Networks Adds To Oracle Database Oracle Database Firewall BIG-IP Application Security Manager The “True Security Company” Red Herring F5 Friday: Two Heads are Better Than One306Views0likes0Comments