F5 Distributed Cloud
230 TopicsKubernetes architecture options with F5 Distributed Cloud Services
Summary F5 Distributed Cloud Services (F5 XC) can both integrate with your existing Kubernetes (K8s) clustersand/or host aK8s workload itself. Within these distinctions, we have multiple architecture options. This article explores four major architectures in ascending order of sophistication and advantages. Architecture #1: External Load Balancer (Secure K8s Gateway) Architecture #2: CE as a pod (K8s site) Architecture #3: Managed Namespace (vK8s) Architecture #4: Managed K8s (mK8s) Kubernetes Architecture Options As K8s continues to grow, options for how we run K8s and integrate with existing K8s platforms continue to grow. F5 XC can both integrate with your existing K8s clustersand/orrun a managed K8s platform itself.Multiple architectures exist within these offerings too, so I was thoroughly confused when I first heard about these possibilities. A colleague recently laid it out for me in a conversation: "Michael, listen up: XC can eitherintegrate with your K8s platform,run insideyour K8s platform, host virtual K8s(Namespace-aaS), or run a K8s platformin your environment." I replied, "That's great. Now I have a mental model for differentiating between architecture options." This article will overview these architectures and provide 101-level context: when, how, and why would you implement these options? Side note 1: F5 XC concepts and terms F5 XC is a global platform that can provide networking and app delivery services, as well as compute (K8s workloads). We call each of our global PoP's a Regional Edge (RE). RE's are highly meshed to form the backbone of the global platform. They connect your sites, they can expose your services to the Internet, and they can run workloads. This platform is extensible into your data center by running one or more XC Nodes in your network, also called a Customer Edge (CE). A CE is a compute node in your network that registers to our global control plane and is then managed by a customer as SaaS. The registration of one or more CE's creates a customer site in F5 XC. A CE can run on ahypervisor (VMWare/KVM/Etc), a Hyperscaler (AWS, Azure, GCP, etc), baremetal, or even as a k8s pod, and can be deployed in HA clusters. XC Mesh functionality provides connectivity between sites, security services, and observability. Optionally, in addition, XC App Stack functionality allows a large and arbitrary number of managed clusters to be logically grouped into a virtual site with a single K8s mgmt interface. So where Mesh services provide the networking, App Stack services provide the Kubernetes compute mgmt. Our first 2 architectures require Mesh services only, and our last two require App Stack. Side note 2: Service-to-service communication I'm often asked how to allow services between clusters to communicate with each other. This is possible and easy with XC. Each site can publish services to every other site, including K8s sites. This means that any K8s service can be reachable from other sites you choose. And this can be true in any of the architectures below, although more granular controls are possible with the more sophisticated architectures. I'll explore this common question more in a separate article. Architecture 1: External Load Balancer (Secure K8s Gateway) In a Secure Kubernetes Gatewayarchitecture, you have integration with your existing K8s platform, using the XC node as the external load balancer for your K8s cluster. In this scenario, you create a ServiceAccount and kubeconfig file to configure XC. The XC node then performs service discovery against your K8s API server. I've covered this process in a previous article, but the advantage is that you can integrate withexisting K8s platforms. This allows exposing both NodePort and ClusterIP services via the XC node. XC is not hosting any workloads in this architecture, but it is exposing your services to your local network, or remote sites, or the Internet. In the diagram above, I show a web application being accesssed from a remote site (and/or the Internet) where the origin pool is a NodePort service discovered in a K8s cluster. Architecture 2: Run a site within a K8s cluster (K8s site type) Creating a K8s site is easy - just deploy a single manifest found here. This file deploys multiple resources in your cluster, and together these resources work to provide the services of a CE, and create a customer site. I've heard this referred to as "running a CE inside of K8s" or "running your CE as a pod". However, when I say "CE node" I'm usually referring to a discreet compute node like a VM or piece of hardware; this architecture is actually a group of pods and related resources that run within K8s to create a XC customer site. With XC running inside your existing cluster, you can expose services within the cluster by DNS name because the site will resolve these from within the cluster. Your service can then be exposed anywhere by the F5 XC platform. This is similar to Architecture 1 above, but with this model, your site is simply a group of pods within K8s. An advantage here is the ability to expose services of other types (e.g. ClusterIP). A site deployed into a K8s cluster will only support Mesh functionality and does not support AppStack functionality (i.e., you cannot run a cluster within your cluster). In this architecture, XC acts as a K8s ingress controller with built-in application security. It also enables Mesh features, such as publishing of other sites' services on this site, and publishing of this site's discovered services on other sites. Architecture 3: vK8s (Namespace-as-a-Service) If the services you use includeAppStack capabilities, then architectures #3 and #4 are possible for you.In these scenarios, our XC nodeactually runs your K8son your workloads. We are no longer integrating XC with your existing K8s platform. XCisthe platform. A simple way to run K8s workloads is to use avirtual k8s (vK8s) architecture. This could be referred to as a "managed Namespace" because by creating a vK8s object in XC you get a single namespace in a virtual cluster. Your Namespace can be fully hosted (deployed to RE's) or run on your VM's (CE's), or both. Your kubeconfig file will allow access to your Namespace via the hosted API server. Via your regular kubectl CLI (or via the web console) you can create/delete/manage K8s resources (Deployments, Services, Secrets, ServiceAccounts, etc) and view application resource metrics. This is great if you have workloads that you want to deploy to remote regions where you do not have infrastructure and would prefer to run in F5's RE's, or if you have disparate clusters across multiple sites and you'd like to manage multiple K8s clusters via a single centralized, virtual cluster. Best practice guard rails for vK8s With a vK8s architecture, you don't have your own cluster, but rather a managed Namespace. So there are somerestrictions(for example, you cannot run a container as root, bind to a privileged port, or to the Host network). You cannot create CRD's, ClusterRoles, PodSecurityPolicies, or Namespaces, so K8s operators are not supported. In short, you don't have a managed cluster, but a managed Namespace on a virtual cluster. Architecture 4: mK8s (Managed K8s) Inmanaged k8s (mk8s, also known as physical K8s or pk8s) deployment, we have an enterprise-level K8s distribution that is run at your site. This means you can use XC to deploy/manage/upgrade K8s infrastructure, but you manage the Kubernetes resources. The benefitsinclude what is typical for 3rd-party K8s mgmt solutions, but also some key differentiators: multi-cloud, with automation for Azure, AWS, and GCP environments consumed by you as SaaS enterprise-level traffic control natively allows a large and arbitrary number of managed clusters to be logically managed with a single K8s mgmt interface You can enable kubectl access against your local cluster and disable the hosted API server, so your kubeconfig file can point to a global URL or a local endpoint on-prem. Another benefit of mK8s is that you are running a full K8s cluster at your site, not just a Namespace in a virtual cluster. The restrictions that apply to vK8s (see above) do not apply to mK8s, so you could run privileged pods if required, use Operators that make use of ClusterRoles and CRDs, and perform other tasks that require cluster-wide access. Traffic management controls with mK8s Because your workloads run in a cluster managed by XC, we can apply more sophisticated and native policies to K8s traffic than non-managed clusters in earlier architectures: Service isolation can be enforced within the cluster, so that pods in a given namespace cannot communicate with services outside of that namespace, by default. More service-to-service controls exist so that you can decide which services can reach with other services with more granularity. Egress controlcan be natively enforced for outbound traffic from the cluster, by namespace, labels, IP ranges, or other methods. E.g.: Svc A can reach myapi.example.com but no other Internet service. WAF policies, bot defense, L3/4 policies,etc—allof these policies that you have typically applied with network firewalls, WAF's, etc—can be applied natively within the platform. This architecture took me a long time to understand, and longer to fully appreciate. But once you have run your workloads natively on a managed K8s platform that is connected to a global backbone and capable of performing network and application delivery within the platform, the security and traffic mgmt benefits become very compelling. Conclusion: As K8s continues to expand, management solutions of your clusters make it possible to secure your K8s services, whether they are managed by XC or exist in disparate clusters. With F5 XC as a global platform consumed as a service—not a discreet installation managed by you—the available architectures here are unique and therefore can accommodate the diverse (and changing!) ways we see K8s run today. Related Articles Securely connecting Kubernetes Microservices with F5 Distributed Cloud Multi-cluster Multi-cloud Networking for K8s with F5 Distributed Cloud - Architecture Pattern Multiple Kubernetes Clusters and Path-Based Routing with F5 Distributed Cloud9.2KViews29likes5CommentsAPI Security: How to implement API Access Control with F5
Per Gartner, API Security comprises two aspects: API Threat Protection and API Access Control. API Threat Protection is addressed with measures such as API L7 firewall, bot protection, DDoS mitigation, etc. API Access Control is most comprehensively addressed via OAuth 2.0. This article will see our attention focused on API Access Control, and how F5 APM can be leverage for this universal challenge when protecting API.5.3KViews5likes1CommentMitigating OWASP Web Application Security Top 10 – 2021 risks using F5 Distributed Cloud Platform
Overview: In the early 90’s, applications were in dormant phase and JavaScript & XML were dominating this technology. But in 1999, the first web application was introduced after the release of the Java language in 1995. Later with the adoption of new languages like Ajax, HTML, Node, Angular, SQL, Go, Python, etc. and availability of web application frameworks have boosted application development, deployment, and release to production. With the evolving software technologies, modern web applications are becoming more and more innovative, providing users with a grand new experience and ridiculously ease of interface. With these leading-edge technologies, novel exploit surfaces are also exposed which made them a primary target for intruders/hackers. Application safeguarding against all these common exploits is a necessary step in protecting backend application data. Open Worldwide Application Security Project (OWASP) is one of those security practices which protects application with above issues. This article is the first part of the series and covers OWASP evolution, its importance and overview of top 10 categories. Before diving into OWASP Web Application Security Top 10, let’s time travel to era of 1990’s and try to identify challenges the application customers, developers and users were facing. Below are some of them: Rapid and diversified cyber-attacks has become a major concern and monitoring/categorizing them was difficult Product owners are concerned about application security & availability and are in desperate need of a checklist/report to understand their application security posture Developers are looking for recommendations to securely develop code before running into security flaws in production No consolidated repo to manage, document and provide research insights for every security vulnerability After running into the above concerns, people across the globe have come together in 2001 and formed an international open-source community OWASP. It’s a non-profit foundation which has people from different backgrounds like developers, evangelist, security experts, etc. The main agenda for this community is to solve application related issues by providing: Regularly updating “OWASP TOP 10” report which provides insights of latest top 10 security issues in web applications Report also provides security recommendations to protect them from these issues Consolidated monitoring and tracking of application vulnerabilities Conducting events, trainings and conferences around the world to discuss, solve and provide preventive recommendations for latest security issues OWASP also provides security tools, research papers, libraries, cheat sheets, books, presentations and videos covering application security testing, secure development, and secure code review OWASP WEB SECURITY TOP 10 2021: With the rapid increase of cyber-attacks and because of dynamic report updates, OWASP gained immense popularity and is considered as one of the top security aspects which application companies are following to protect their modern applications against known security issues. Periodically they release their Top 10 vulnerabilities report and below are the latest Top 10 - 2021 categories with their summary: A01:2021-Broken Access Control Access controls enforce policy such that users cannot act outside of their intended permissions. Also called authorization, it allows or denies access to your application's features and resources. Misuse of access control enables unauthorized access to sensitive information, privilege escalation and illegal file executions. Check this article on protection against broken access vulnerabilities A02:2021-Cryptographic Failures In 2017 OWASP top 10 report, this attack was known as Sensitive Data Exposure, which focuses on failures related to cryptography leading to exposure of sensitive data. Check this article on cryptographic failures A03:2021-Injection An application is vulnerable to injection if user data and schema is not validated by the application. Some of the common injections are XSS, SQL, NoSQL, OS command, Object Relational Mapping (ORM), etc., causing data breaches and loss of revenue. Check this article on safeguarding against injection exploits A04:2021-Insecure Design During the development cycle, some phases might be reduced in scope which leads to some of the vulnerabilities. Insecure Design represents the weaknesses i.e., lack of security controls which are not tracked in other categories throughout the development cycle. Check this article on design flaws and mitigation A05:2021-Security Misconfiguration This occurs when security best practices are overlooked allowing attackers to get into the system utilizing the loopholes. XML External Entities (XXE), which was previously a Top 10 category, is now a part of security misconfiguration. Check this article on protection against misconfiguration vulnerabilities A06:2021-Vulnerable and Outdated Components Applications used in enterprises are prone to threats such as code injection, buffer overflow, command injection and cross-site scripting from unsupported, out of date open-source components and known exploited vulnerabilities. Utilizing components with security issues makes the application itself vulnerable. Intruders will take use of this defects and exploit the deprecated packages thereby gaining access to backend applications. Check this article on finding outdated components A07:2021-Identification and Authentication Failures Confirmation of the user's identity, authentication, authorization and session management is critical to protect applications against authentication-related attacks. Apps without valid authorization, use of default credentials and unable to detect bot traffic are some of the scenarios in this category. Check this article on identifying and protection against bots A08:2021-Software and Data Integrity Failures Software and data integrity failures occurs when updates are pushed to the deployment pipeline without verifying its integrity. Insecure Deserialization, which was a separate category in OWASP 2017, has now become a part of this larger category set. Check this article on software failures protection A09:2021-Security Logging and Monitoring Failures As a best recommendation, we shall always log all incoming request details and monitor application for fraudulent transactions, invalid logins, etc. to identify if there are any attacks or breaches. Applications without logging capabilities provide opportunities to the attackers to exploit the application and may lead to many security concerns. Without logging and monitoring we won’t be able to validate the application traffic and can’t identify the source of the breach. Check this article for identifying logging issues A10:2021-Server-Side Request Forgery Server-Side Request Forgery (SSRF) attack is a technique which allows intruders to manipulate the server-side application vulnerability and make a malicious request to the internal-only resources. Attacker exploits this flaw by modifying/crafting a URL which forces the server to retrieve and disclose sensitive information. Check this article which focusses on SSRF mitigation NOTE: This is an overview article of this OWASP series, check the below links to prevent these vulnerabilities using F5 Distributed Cloud Platform. OWASP Web Application Security Series: Broken access mitigation Cryptographic failures Injection mitigation Insecure design mitigation Security misconfiguration prevention Vulnerable and outdated components Identification failures prevention Software failures mitigation Security logging issues prevention SSRF Mitigation3.3KViews6likes1CommentMitigating OWASP Web Application Risk: Broken Access attacks using F5 Distributed Cloud Platform
This article is in continuation of the owasp series and will cover broken access control.Check here for overview article. Introduction to Broken Access Control attack: Access controls enforces policy such that users cannot act outside of their intended permissions. Also called authorization, allows or denies access to your application's features and resources. Misuse of access control enables: Unauthorized access to sensitive information. Privilege escalation. Illegal file executions. There are many ways to infiltrate application servers using broken access controls and we are going to focus on the 2 scenarios below and how to mitigate them. Scenario 1: Broken access + SQL injection attack Instead of logging with valid credentials,attacker uses SQL injection attacks to login as another standard or higher privileged user, like admin.We can also say this is broken authentication, because an attacker authenticated to a system using injection attack without providing valid credentials. For this demo I am using OWASP Juice shop (reference links at bottom for more info). Step1: Please follow steps suggested in Article1 to configure HTTP load balancer and WAF in cloud console. Make sure WAF is configured in Monitoring mode to generate the attack. Step2: Open a browser and navigate to the login page of the application load balancer. In the Email field provide “' OR true --” and any password as below: Step3: Validate you can login to application as administrator as below: Scenario2: File upload vulnerability Any file which has the capability to harm the server is a malicious file.For example, a php file which has some dangerous php functions like exec () can be considered as a malicious file as these functions can execute OS command and can remotely provide us the control of the application server. Suppose there is a file upload functionality in the web application and only jpeg extension file is allowed to be uploaded. Failing to properly enforce access restrictions on file properties can lead to broken access control attacks providing attackers a way to upload potentially dangerous files with different extensions.For this demo I am using DVWA as the vulnerable testing application (reference links at bottom for more info). Step by step process: Step1: Open a notepad editor and paste below contents and save to desktop as malicious.php Step2: Open a browser and navigate to the application load balancer URL. Login to DVWA application using admin/password as the credentials. Click on “File Upload” option in left side of the menu section. Step3: This page is used to upload images with extensions .jpeg, .png, .gif etc. But this demo application doesn’t have file restrictions enabled making attackers to upload any file extensions. Click on “Choose File” button and upload above created .php file. Step4: Note the location displayed in the message, open the URL in the browser and validate we can see all the users available as below. NOTE: Since this is just a demo environment, I'm using same F5 Distributed Cloud load balancer for both the demo applications by changing the IP and ports in F5 Distributed Cloud Origin pool as per my needs. That's why you can see both apps are accessible using juiceshop domain. Solution: To mitigatethese attacks, navigate to Firewall section and in “App Firewall” configuration make sure “Enforcement Mode” is set to “Blocking” as below: Next in browser try to generate above scenarios and validate your request is blocked as below. Login Mitigation: Illegal File Upload mitigation: Illegal File Execution mitigations: In Distributed Cloud Console expand the security event and check the WAF section to understand the reason why request was blocked. Conclusion: As shown above, OWASP Top 10: Broken access control attacks can be mitigated by configuring WAF firewall in “Blocking” mode. For further information click the links below: OWASP - Broken access control File Upload Vulnerability OWASP Juice Shop DVWA3.7KViews6likes0CommentsDeploying F5 Distributed Cloud (XC) Services in Cisco ACI - Layer Three Attached Deployment
Introduction F5 Distributed Cloud (XC) Services are SaaS-based security, networking, and application management services that can be deployed across multi-cloud, on-premises, and edge locations. This article will show you how you can deploy F5 Distributed Cloud Customer Edge (CE) site in Cisco Application Centric Infrastructure (ACI) so that you can securely connect your application in Hybrid Multi-Cloud environment. XC Layer Three Attached CE in Cisco ACI A F5 Distributed Cloud Customer Edge (CE) site can be deployed with Layer Three Attached in Cisco ACI environment using Cisco ACI L3Out. As a reminder, Layer Three Attached is one of the deployment models to get traffic to/from a F5 Distributed Cloud CE site, where the CE can be a single node or a three nodes cluster. Static routing and BGP are both supported in the Layer Three Attached deployment model. When a Layer Three Attached CE site is deployed in Cisco ACI environment using Cisco ACI L3Out, routes can be exchanged between them via static routing or BGP. In this article, we will focus on BGP peering between Layer Three Attached CE site and Cisco ACI Fabric. XC BGP Configuration BGP configuration on XC is simple and it only takes a couple steps to complete: 1) Go to "Multi-Cloud Network Connect" -> "Networking" -> "BGPs". *Note: XC homepage is role based, and to be able to configure BGP, "Advanced User" is required. 2) "Add BGP" to fill out the site specific info, such as which CE Site to run BGP, its BGP AS number etc., and "Add Peers" to include its BGP peers’ info. *Note: XC supports direct connection for BGP peering IP reachability only. XC Layer Three Attached CE in ACI Example In this section, we will use an example to show you how to successfully bring up BGP peering between a F5 XC Layer Three Attached CE site and a Cisco ACI Fabric so that you can securely connect your application in Hybrid Multi-Cloud environment. Topology In our example, CE is a three nodes cluster(Master-0, Master-1 and Master-2) that has a VIP 10.10.122.122/32 with workloads, 10.131.111.66 and 10.131.111.77, in the cloud (AWS): The CE connects to the ACI Fabricvia a virtual port channel (vPC) that spans across two ACI boarder leaf switches. CE and ACI Fabric are eBGP peers via an ACI L3Out SVI for routes exchange. CE is eBGP peered to both ACI boarder leaf switches, so that in case one of them is down (expectedly or unexpectedly), CE can still continue to exchange routes with the ACI boarder leaf switch that remains up and VIP reachability will not be affected. XC BGP Configuration First, let us look at the XC BGP configuration ("Multi-Cloud Network Connect" -> "Networking" -> "BGPs"): We"Add BGP" of "jy-site2-cluster" with site specific BGP info along with a total of six eBGP peers (each CE node has two eBGP peers; one to each ACI boarder leaf switch): We "Add Item" to specify each of the six eBPG peers’ info: Example reference - ACI BGP configuration: XC BGP Peering Status There are a couple of ways to check the BGP peering status on the F5 Distributed Cloud Console: Option 1 Go to "Multi-Cloud Network Connect" -> "Networking" -> "BGPs" -> "Show Status" from the selected CE site to bring up the "Status Objects" page. The "Status Objects" page provides a summary of the BGP status from each of the CE nodes. In our example, all three CE nodes from "jy-site2-cluster" are cleared with "0 Failed Conditions" (Green): We can simply click on a CE node UID to further look into the BGP status from the selected CE node with all of its BGP peers. Here, we clicked on the UID of CE node Master-2 (172.18.128.14) and we can see it has two eBGP peers: 172.18.128.11 (ACI boarder leaf switch 1) and 172.18.128.12 (ACI boarder leaf switch 2), and both of them are Up: Here is the BGP status from the other two CE nodes - Master-0 (172.18.128.6) and Master-1 (172.18.128.10): For reference, here is an example of a CE node with "Failed Conditions" (Red) due to one of its BGP peers is down: Option 2 Go to "Multi-Cloud Network Connect" -> "Overview" -> "Sites" -> "Tools" -> "Show BGP peers" to bring up the BGP peers status info from all CE nodes from the selected site. Here, we can see the same BGP status of CE node master-2 (172.18.128.14) which has two eBGP peers: 172.18.128.11 (ACI boarder leaf switch 1) and 172.18.128.12 (ACI boarder leaf switch 2), and both of them are Up: Here is the output of the other two CE nodes - Master-0 (172.18.128.6) and Master-1 (172.18.128.10): Example reference - ACI BGP peering status: XC BGP Routes Status To check the BGP routes, both received and advertised routes, go to "Multi-Cloud Network Connect" -> "Overview" -> "Sites" -> "Tools" -> "Show BGP routes" from the selected CE sites: In our example, we see all three CE nodes (Master-0, Master-1 and Master-2) advertised (exported) 10.10.122.122/32 to both of its BPG peers: 172.18.128.11 (ACI boarder leaf switch 1) and 172.18.128.12 (ACI boarder leaf switch 2), while received (imported) 172.18.188.0/24 from them: Now, if we check the ACI Fabric, we should see both 172.18.128.11 (ACI boarder leaf switch 1) and 172.18.128.12 (ACI boarder leaf switch 2) advertised 172.18.188.0/24 to all three CE nodes, while received 10.10.122.122/32 from all three of them (note "|" for multipath in the output): XC Routes Status To view the routing table of a CE node (or all CE nodes at once), we can simply select "Show routes": Based on the BGP routing table in our example (shown earlier), we should see each CE node has two Equal Cost Multi-Path (ECMP) installed in the routing table for 172.18.188.0/24: one to 172.18.128.11 (ACI boarder leaf switch 1) and one to 172.18.128.12 (ACI boarder leaf switch 2) as the next-hop, and we do (note "ECMP" for multipath in the output): Now, if we check the ACI Fabric, each of the ACI boarder leaf switch should have three ECMP installed in the routing table for 10.10.122.122: one to each CE node (172.18.128.6, 172.18.128.10 and 172.18.128.14) as the next-hop, and we do: Validation We can now securely connect our application in Hybrid Multi-Cloud environment: *Note: After F5 XC is deployed, we also use F5 XC DNS as our primary nameserver: To check the requests on the F5 Distributed Cloud Console, go to"Multi-Cloud Network Connect" -> "Sites" -> "Requests" from the selected CE site: Summary A F5 Distributed Cloud Customer Edge (CE) site can be deployed with Layer Three Attached deployment model in Cisco ACI environment. Both static routing and BGP are supported in the Layer Three Attached deployment model and can be easily configured on F5 Distributed Cloud Console with just a few clicks. With F5 Distributed Cloud Customer Edge (CE) site deployment, you can securely connect your application in Hybrid Multi-Cloud environment quickly and efficiently. Next Check out this video for some examples of Layer Three Attached CE use cases in Cisco ACI: Related Resources *On-Demand Webinar*Deploying F5 Distributed Cloud Services in Cisco ACI F5 Distributed Cloud (XC) Global Applications Load Balancing in Cisco ACI Deploying F5 Distributed Cloud (XC) Services in Cisco ACI - Layer Two Attached Deployment Customer Edge Site - Deployment & Routing Options Cisco ACI L3Out White Paper1.5KViews4likes1CommentMulti-port support for HTTP/TCP load balancers in F5 Distributed Cloud (XC)
Overview: In the ever-evolving landscape of the digital world driven by innovation, catering to the new requirements is vital for modern application scalability, adaptability, and longevity. Multi-port support refers to the capability of a system to handle and manage multiple application ports simultaneously. This flexibility is particularly important in scenarios where a single device needs to serve diverse services. Multi-port support is essential for various reasons, including some of the below: Parallel Processing: It allows the system to process multiple app streams concurrently, enhancing efficiency and reducing latency. Diverse Services: Different applications or services often require dedicated ports to function. Multi-port support enables a system to accommodate a variety of services simultaneously. Load Balancing: Distributing application traffic across multiple ports helps balance the load, preventing bottlenecks and optimizing resource utilization. Security: Sometimes SecOps want to have testing ports opened, which allow access to applications for testing, scanning, monitoring, and addressing potential security vulnerabilities. Flexibility: Systems with multi-port support are adaptable to modern micro-service-based architectures, supporting a diverse range of applications and services. IP limitations: Since IP’s are limited, customers don’t want to use a different IP for each user, so instead they want to reserve a single IP and want to distribute load on different ports. Note: For today’s demonstration, we have deployed multiple demo applications like JuiceShop, DVWA, NGINX, F5 Air asmicro-serviceson multiple systems/ports to showcase the capabilities of multi-port support and their deployment steps are out of scope in this article. Let’s unravel three below real-world use cases of multi-port support and how it can be implemented in F5 Distributed Cloud (F5 XC) in easy-to-follow steps. Use case I – Multiple Ports In this use case, let’s assume the customer already has onboarded his backend application as an origin pool in XC. Next, the customer wants to access the same application using multiple ports, either for genuine access or for testing. For achieving this use case, follow below steps: Login to F5 XC console and navigate to “Distributed Apps” --> “Manage Load balancer” section For this use case, create a HTTP load balancer with your backend application, needed ports in csv format, type as HTTP, name, domain name as shown below. NOTE: Provide only unused ports or you will run into port conflict errors. Also configure DNS records as per your setup. Once load balancer is created successfully, validate your application is accessible on the configured port and LB domain name Use case II – Port Range In this scenario, customers have the requirement to access an application in a range of ports either for parallel processing or load balancing. For configuration, follow below steps: Login to F5 XC console and navigate to “Distributed Apps” section For this use case, create a HTTPS load balancer with your backend application, needed port range and domain name as shown below. NOTE: Provide only unused port range to avoid port conflict error. Validate your application is accessible on configured ports just like below Use case III – Origin Pool Dynamic port In this requirement, the backend application port should be dynamic and is dependent on the load balancer access port number. Let’s say a customer has multiple services running on multiple ports and wants users to access these services using a single TCP load balancer. To meet this solution, follow steps below: Login to F5 XC console and navigate to “Distributed Apps” section Next, move to “Origin Pool” section and onboard your basic backend application details and select the "origin server port" option as the "loadbalancer port" (as shown below). We can also configure health checks to LB ports instead of endpoints for better visibility. We are halfway there!!. Move to “TCP Load balancer” section and create a TCP load balancer with required port ranges and your application origin pool. Your configuration will look something like below Finally for the fun part: Once load balancer comes to a READY state, open a browser and make sure different services are accessible on configured domain name and ports shown below NOTE: For above solution to work,multiple services should be running on the configured ports of backend system and this port range should be unused by other services on the XC platform We have just scratched the surface of the the wide range of use cases of multi-port and there is a lot of demand in the market for many scenarios combining different functionalities of HTTP/HTTPS/TCP, single/multi services on same system or multiple backend systems and can also be routed to appropriate backends using port range filters in routes. As percustomer requirements, appropriate configurations can be done on F5 XC for seamless integration and to leverage the pervasive WAAP security ecosystem. Conclusion: Winding up, this article pondered the market demand for the support of multi-port range in HTTP/TCP load balancers and then we took you on a roller coaster ride of different use cases. Finally, we also demonstrated how F5 XC can foster in shaping and optimizing your application versatile multi-port requirements. Ever wondered what is F5 XC and how it acts as a “Guardian of Applications”, check below links: F5 Distributed Cloud Services F5 Distributed Cloud WAAP1.1KViews4likes1CommentHow I Did it - Migrating Applications to Nutanix NC2 with F5 Distributed Cloud Secure Multicloud Networking
In this edition of "How I Did it", we will explore how F5 Distributed Cloud Services (XC) enables seamless application extension and migration from an on-premises environment to Nutanix NC2 clusters.793Views4likes0CommentsSeamless Application Migration to OpenShift Virtualization with F5 Distributed Cloud
As organizations endeavor to modernize their infrastructure, migrating applications to advanced virtualization platforms like Red Hat OpenShift Virtualization becomes a strategic imperative. However, they often encounter challenges such as minimizing downtime, maintaining seamless connectivity, ensuring consistent security, and reducing operational complexity. Addressing these challenges is crucial for a successful migration. This article explores howF5 Distributed Cloud (F5 XC), in collaboration with Red Hat's Migration Toolkit for Virtualization (MTV), provides a robust solution to facilitate a smooth, secure, and efficient migration to OpenShift Virtualization. The Joint Solution: F5 XC CE and Red Hat MTV Building upon our previous work ondeploying F5 Distributed Cloud Customer Edge (XC CE) in Red Hat OpenShift Virtualization, we delve into the next phase of our joint solution with Red Hat. By leveraging F5 XC CE in both VMware and OpenShift environments, alongside Red Hat’s MTV, organizations can achieve a seamless migration of virtual machines (VMs) from VMware NSX to OpenShift Virtualization. This integration not only streamlines the migration process but also ensures continuous application performance and security throughout the transition. Key Components: Red Hat Migration Toolkit for Virtualization (MTV): Facilitates the migration of VMs from VMware NSX to OpenShift Virtualization, an add-on to OpenShift Container Platform F5 Distributed Cloud Customer Edge (XC CE) in VMware: Manages and secures application traffic within the existing VMware NSX environment. F5 XC CE in OpenShift: Ensures consistent load balancing and security in the new OpenShift Virtualization environment. Demonstration Architecture To illustrate the effectiveness of this joint solution, let’s delve into the Demo Architecture employed in our demo: The architecture leverages F5 XC CE in both environments to provide a unified and secure load balancing mechanism. Red Hat MTV acts as the migration engine, seamlessly transferring VMs while F5 XC CE manages traffic distribution to ensure zero downtime and maintain application availability and security. Benefits of the Joint Solution 1. Seamless Migration: Minimal Downtime: The phased migration approach ensures that applications remain available to users throughout the process. IP Preservation: Maintaining the same IP addresses reduces the complexity of network reconfiguration and minimizes potential disruptions. 2. Enhanced Security: Consistent Policies: Security measures such as Web Application Firewalls (WAF), bot detection, and DoS protection are maintained across both environments. Centralized Management: F5 XC CE provides a unified interface for managing security policies, ensuring robust protection during and after migration. 3. Operational Efficiency: Unified Platform: Consolidating legacy and cloud-native workloads onto OpenShift Virtualization simplifies management and enhances operational workflows. Scalability: Leveraging Kubernetes and OpenShift’s orchestration capabilities allows for greater scalability and flexibility in application deployment. 4. Improved User Experience: Continuous Availability: Users experience uninterrupted access to applications, unaware of the backend migration activities. Performance Optimization: Intelligent load balancing ensures optimal application performance by efficiently distributing traffic across environments. Watch the Demo Video To see this joint solution in action, watch our detailed demo video on the F5 DevCentral YouTube channel. The video walks you through the migration process, showcasing how F5 XC CE and Red Hat MTV work together to facilitate a smooth and secure transition from VMware NSX to OpenShift Virtualization. Conclusion Migrating virtual machines (VMs) from VMware NSX to OpenShift Virtualization is a significant step towards modernizing your infrastructure. With the combined capabilities of F5 Distributed Cloud Customer Edge and Red Hat’s Migration Toolkit for Virtualization, organizations can achieve this migration with confidence, ensuring minimal disruption, enhanced security, and improved operational efficiency. Related Articles: Deploying F5 Distributed Cloud Customer Edge in Red Hat OpenShift Virtualization BIG-IP VE in Red Hat OpenShift Virtualization VMware to Red Hat OpenShift Virtualization Migration OpenShift Virtualization244Views1like0CommentsDeploying F5 Distributed Cloud Customer Edge in Red Hat OpenShift Virtualization
Introduction Red Hat OpenShift Virtualization is a feature that brings virtual machine (VM) workloads into the Kubernetes platform, allowing them to run alongside containerized applications in a seamless, unified environment. Built on the open-source KubeVirt project, OpenShift Virtualization enables organizations to manage VMs using the same tools and workflows they use for containers. Why OpenShift Virtualization? Organizations today face critical needs such as: Rapid Migration: "I want to migrate ASAP" from traditional virtualization platforms to more modern solutions. Infrastructure Modernization: Transitioning legacy VM environments to leverage the benefits of hybrid and cloud-native architectures. Unified Management: Running VMs alongside containerized applications to simplify operations and enhance resource utilization. OpenShift Virtualization addresses these challenges by consolidating legacy and cloud-native workloads onto a single platform. This consolidation simplifies management, enhances operational efficiency, and facilitates infrastructure modernization without disrupting existing services. Integrating F5 Distributed Cloud Customer Edge (XC CE) into OpenShift Virtualization further enhances this environment by providing advanced networking and security capabilities. This combination offers several benefits: Multi-Tenancy: Deploy multiple CE VMs, each dedicated to a specific tenant, enabling isolation and customization for different teams or departments within a secure, multi-tenant environment. Load Balancing: Efficiently manage and distribute application traffic to optimize performance and resource utilization. Enhanced Security: Implement advanced threat protection at the edge to strengthen your security posture against emerging threats. Microservices Management: Seamlessly integrate and manage microservices, enhancing agility and scalability. This guide provides a step-by-step approach to deploying XC CE within OpenShift Virtualization, detailing the technical considerations and configurations required. Technical Overview Deploying XC CE within OpenShift Virtualization involves several key technical steps: Preparation Cluster Setup: Ensure an operational OpenShift cluster with OpenShift Virtualization installed. Access Rights: Confirm administrative permissions to configure compute and network settings. F5 XC Account: Obtain access to generate node tokens and download the XC CE images. Resource Optimization: Enable CPU Manager: Configure the CPU Manager to allocate CPU resources effectively. Configure Topology Manager: Set the policy to single-numa-node for optimal NUMA performance. Network Configuration: Open vSwitch (OVS) Bridges: Set up OVS bridges on worker nodes to handle networking for the virtual machines. NetworkAttachmentDefinitions (NADs): Use Multus CNI to define how virtual machines attach to multiple networks, supporting both external and internal connectivity. Image Preparation: Obtain XC CE Image: Download the XC CE image in qcow2 format suitable for KubeVirt. Generate Node Token: Create a one-time node token from the F5 Distributed Cloud Console for node registration. User Data Configuration: Prepare cloud-init user data with the node token and network settings to automate the VM initialization process. Deployment: Create DataVolumes: Import the XC CE image into the cluster using the Containerized Data Importer (CDI). Deploy VirtualMachine Resources: Apply manifests to deploy XC CE instances in OpenShift. Network Configuration Setting up the network involves creating Open vSwitch (OVS) bridges and defining NetworkAttachmentDefinitions (NADs) to enable multiple network interfaces for the virtual machines. Open vSwitch (OVS) Bridges Create a NodeNetworkConfigurationPolicy to define OVS bridges on all worker nodes: apiVersion: nmstate.io/v1 kind: NodeNetworkConfigurationPolicy metadata: name: ovs-vms spec: nodeSelector: node-role.kubernetes.io/worker: '' desiredState: interfaces: - name: ovs-vms type: ovs-bridge state: up bridge: allow-extra-patch-ports: true options: stp: true port: - name: eno1 ovn: bridge-mappings: - localnet: ce2-slo bridge: ovs-vms state: present Replace eno1 with the appropriate physical network interface on your nodes. This policy sets up an OVS bridge named ovs-vms connected to the physical interface. NetworkAttachmentDefinitions (NADs) Define NADs using Multus CNI to attach networks to the virtual machines. External Network (ce2-slo): External Network (ce2-slo): Connects VMs to the physical network with a specific VLAN ID. This setup allows the VMs to communicate with external systems, services, or networks, which is essential for applications that require access to resources outside the cluster or need to expose services to external users. apiVersion: k8s.cni.cncf.io/v1 kind: NetworkAttachmentDefinition metadata: name: ce2-slo namespace: f5-ce spec: config: | { "cniVersion": "0.4.0", "name": "ce2-slo", "type": "ovn-k8s-cni-overlay", "topology": "localnet", "netAttachDefName": "f5-ce/ce2-slo", "mtu": 1500, "vlanID": 3052, "ipam": {} } Internal Network (ce2-sli): Internal Network (ce2-sli): Provides an isolated Layer 2 network for internal communication. By setting the topology to "layer2", this network operates as an internal overlay network that is not directly connected to the physical network infrastructure. The mtu is set to 1400 bytes to accommodate any overhead introduced by encapsulation protocols used in the internal network overlay. apiVersion: k8s.cni.cncf.io/v1 kind: NetworkAttachmentDefinition metadata: name: ce2-sli namespace: f5-ce spec: config: | { "cniVersion": "0.4.0", "name": "ce2-sli", "type": "ovn-k8s-cni-overlay", "topology": "layer2", "netAttachDefName": "f5-ce/ce2-sli", "mtu": 1400, "ipam": {} } VirtualMachine Configuration Configuring the virtual machine involves preparing the image, creating cloud-init user data, and defining the VirtualMachine resource. Image Preparation Obtain XC CE Image: Download the qcow2 image from the F5 Distributed Cloud Console. Generate Node Token: Acquire a one-time node token for node registration. Cloud-Init User Data Create a user-data configuration containing the node token and network settings: #cloud-config write_files: - path: /etc/vpm/user_data content: | token: <your-node-token> slo_ip: <IP>/<prefix> slo_gateway: <Gateway IP> slo_dns: <DNS IP> owner: root permissions: '0644' Replace placeholders with actual network configurations. This file automates the VM's initial setup and registration. VirtualMachine Resource Definition Define the VirtualMachine resource, specifying CPU, memory, disks, network interfaces, and cloud-init configurations. Resources: Allocate sufficient CPU and memory. Disks: Reference the DataVolume containing the XC CE image. Interfaces: Attach NADs for network connectivity. Cloud-Init: Embed the user data for automatic configuration. Conclusion Deploying F5 Distributed Cloud CE in OpenShift Virtualization enables organizations to leverage advanced networking and security features within their existing Kubernetes infrastructure. This integration facilitates a more secure, efficient, and scalable environment for modern applications. For detailed deployment instructions and configuration examples, please refer to the attached PDF guide. Related Articles: BIG-IP VE in Red Hat OpenShift Virtualization VMware to Red Hat OpenShift Virtualization Migration OpenShift Virtualization579Views1like0CommentsSeamless App Connectivity with F5 and Nutanix Cloud Services
Modern enterprise networks face the challenge of connecting diverse cloud services and partner ecosystems, expanding routing domains and distributed application connections. As network complexity grows, the need to onboard applications quickly become paramount despite intricate networking operations. Automation tools like Ansible help manage network and security devices. But it is still hard to connect distributed applications across new systems like clouds and Kubernetes. This article explores F5 Distributed Cloud Services (XC), which facilitates intent-based application-to-application connectivity across varied infrastructures. Expanding and increasingly sophisticated enterprise networks Traditional data center networks typically rely on VLAN-isolated architectures with firewall ACLs for intra-network security. With digital transformation and cloud migrations, new systems work with existing networks. They move from VLANs to labels and namespaces like Kubernetes and Red Hat OpenShift. Future trends point to increased edge computing adoption, further complicating network infrastructures. Managing these complexities raises costs due to design, implementation, and testing impacts of network changes. Network infrastructure is becoming more complex due to factors such as increased NAT settings, routing adjustments, added ACLs, and the need to remove duplicate IP addresses when integrating new and existing networks. This growing complexity drives up the costs of design, implementation, and testing, amplifying the impact of network changes A typical network uses firewalls to control access between VLANs or isolated networks based on security policies. Access lists (ACLs) are organized by source and destination applications or clients. The order of ACLs is important because shorter prefixes can override longer ones. In some cases, ACLs exceed 10,000 lines, making it difficult to identify which rules impact application connectivity. As a result, ACLs for discontinued applications often remain in the firewall configuration, posing potential security risks. However, refactoring ACLs requires significant effort and testing. F5 XC addresses the ACL issue by managing all application connectivity across on-premises, data centers, and clouds. Its load balancer connects applications through VLANs, VPCs, and other networks. Each load balancer has its own application control and associated ACLs, ensuring changes to one load balancer don’t affect others. When an application is discontinued, its load balancer is deleted, preventing leftover configurations and reducing security risks. SNAT/DNAT is commonly used to resolve IP conflicts, but it reduces observability since each NAT table between the client and application must be referenced. ACL implementations vary across router/firewall vendors—some apply filters before NAT, others after. Logs may follow this behavior, making IP address normalization difficult. Pre-NAT IP addresses must be managed across the entire network, adding complexity and increasing costs. F5 XC simplifies distributed load balancing by terminating client sessions and forwarding them to endpoints. Clients and endpoints only need IP reachability to the CE interface. The load balancer can use a VIP for client access, but global management isn't required, as the client-side network sets it. It provides clear source/destination data, making application access easy to track without managing NAT IP addresses. F5 Distributed Cloud MCN/Network as a Service F5XC offers an all-in-one software package for networking and security, managed through a single console with intent-based configuration. This eliminates the need for separate appliance setups. Furthermore, firewall, load balancer, WAF changes, and function updates are done via SDN without causing downtime. The F5 XC Customer Edge (CE) works across physical appliances, VMs, containers, and clouds, creating overlay tunnels between CEs. Acting as an application gateway, it isolatesrouting domains and terminates L3 routing, while maintaining best practices for cloud, Kubernetes, and on-prem networks. This simplifies physical network configurations, speeding up provisioning and reducing costs. How CE works in enterprise network This design is straightforward: CEs are deployed in the cloud and the user’s data center. In this example, the data center CE connects four networks: Underlay network for CE-to-CE connectivity Cloud application network (VPC/VNET) Branch office network Data center application network The data center CE connects the branch office and application networks to their respective VRFs, while the cloud CE links the cloud network to a VRF. The application runs on VLAN 100 (192.168.1.1) in the data center, while clients are in the branch office. The load balancer configuration is as follows: Load balancer: Branch office VRF Domain: ent-app1.com Endpoint (Origin pool): Onpre-VLAN100 VRF, 192.168.1.1 Clients access "ent-app1.com," which resolves to a VIP or CE interface address. The CE identifies the application’s location, and since the endpoint is in the same CE within the Onpre-VLAN100 VRF, it sets the source IP as the CE and forwards traffic to 192.168.1.1. Next, the application is migrated to the cloud. The CE facilitates this transition from on-premises to the cloud by specifying the endpoint. The load balancer configuration is as follows: Load Balancer: Branch Office VRF Domain: ent-app1.com Endpoint (Origin Pool): AWS-VPC VRF, 10.0.0.1 When traffic arrives at the CE from a client in the branch office, the CE in the data center forwards the traffic to the CE on AWS through an overlay tunnel. The only configuration change required is updating the endpoint via the console. There is no need to modify the firewall, switch, or router in the underlay network. Kubernetes networking is unique because it abstracts IP addresses. Applications use FQDNs instead of IP addresses and are isolated by namespace or label. When accessing the external network, Kubernetes uses SNAT to map the IP address to that of the Kubernetes node, masking the source of the traffic. CE can run as a pod within a Kubernetes namespace. Combining a CE on Kubernetes with a CE on-premises offers flexible external access to Kubernetes applications without complex configurations like Multus. F5XC simplifies connectivity by providing a common configuration for linking Kubernetes to on-premises and cloud environments via a load balancer. The load balancer configuration is as follows: Load Balancer: Kubernetes Domain: ent-app1.com Endpoint (Origin Pool): Onprem-vlan100 VRF, 192.168.1.1 / AWS-VPC VRF, 10.0.0.1 * Related blog https://community.f5.com/kb/technicalarticles/multi-cluster-multi-cloud-networking-for-k8s-with-f5-distributed-cloud-%E2%80%93-archite/307125 Load balancer observability The Load Balancer in F5XC offers advanced observability features, including end-to-end network latency, L7 request logs, and API visualization. It automatically aggregates data from various logs and metrics, (see below). You can also generate API graphs from the aggregated data. This allows users to identify which APIs are in use and create policies to block unnecessary ones. Demo movie The video demonstration shows how F5 XC connects applications across different environments, including VM, Kubernetes, on-premises, and cloud. CE delivers both L3 and L7 connectivity across these environments. Conclusion F5 Distributed Cloud Services (F5XC) simplifies enterprise networking by integrating applications seamlessly across VMs, Kubernetes, on-premises, and cloud environments. By minimizing physical network modifications and leveraging best practices from diverse infrastructure systems, F5XC enables efficient, scalable, and secure application connectivity. Key Benefits: - Simplified physical network design - Network as a Service for seamless application communication and visibility - Integration with new networking paradigms like Kubernetes and SASE Looking Ahead As new networking systems emerge, F5XC remains adaptable, leveraging APIs for self-service network configurations and enabling future-ready enterprise networks.183Views1like0Comments