network
89 TopicsBidirectional Forwarding Detection (BFD) Protocol Cheat Sheet
Definition This is a protocol initially described inRFC5880and IPv4/IPv6 specifics inRFC5881. I would say this is an aggressive 'hello-like' protocol with shorter timers but very lightweight on the wire and requiring very little processing as it is designed to be implemented in forwarding plane (although RFC does not forbid it to be implemented in control plane). It also contains a feature called Echo that further leaves cpu processing cycle to roughly ZERO which literally just 'loops' BFD control packets sent from peer back to them without even 'touching' (processing) it. BFD helps routing protocol detects peers failure at sub-second level and BIG-IP supports it on all its routing protocols. On BIG-IP it is control-plane independent as TMM that takes care of BFD sending/receivingunicastprobes (yes,no multicast!) and BIG-IP's Advanced Routing Module® being responsible only for its configuration (of course!) and to receive state information from TMM that is displayed in show commands. BIG-IP's control plane daemon communicates with TMM isoamd. This daemon starts when BFD is enabled in the route domain like any other routing protocol. BFD Handshake Explained 218: BFD was configured on Cisco Router but not on BIG-IP so neighbour signals BIG-IP sessionstate is Down and no flags 219: I had just enabled BFD on BIG-IP, session state is now Init and only Control Plane Independent flag set¹ 220: Poll flag is set to validate initial bidirectional connectivity (expecting Final flag set in response) 221: BIG-IP sets Final flag and handshake is complete² ¹Control Plane Independentflag is set because BFD is not actively performed by BIG-IP's control plane. BIG-IP's BFD control plane daemon (oamd) just signals TMM what BFD sessions are required and TMM takes care of sending/receiving of all BFD control traffic and informs session state back to Advanced Routing Module's daemon. ²Packets 222-223are just to show that after handshake is finished all flags are cleared unless there is another event that triggers them. Packet 218 is how Cisco Router sees BIG-IP when BFD is not enabled. Control Plane Independent flag on BIG-IP remains though for the reasons already explained above. Protocol fields Diagnostic codes 0 (No Diagnostic): Typically seen when BFD session is UP and there are no errors. 1 (Control Detection Time Expired):BFD Detect Timer expired and session was marked down. 2 (Echo Function Failed):BFD Echo packet loop verification failed, session is marked down and this is the diagnostic code number. 3 (Neighbor Signaled Session Down):If either neighbour advertised state or our local state is down you will see this diagnostic code 4 (Forwarding Planet Reset):When forwarding-plane (TMM) is reset and peer should not rely on BFD so session is marked down. 5 (Path Down):Ondemand mode external application can signal BFD that path is down so we can set session down using this code 6 Concatenated Path Down): 7 (Administratively Down):Session is marked down by an administrator 8 (Reverse Concatenated Path Down): 9-31:Reserved for future use BFD verification 'show' commands ³Type IP address to see specific session Modes Asynchronous(default): hello-like mode where BIG-IP periodically sends (and receives) BFD control packets and if control detection timer expires, session is marked as down.It uses UDP port3784. Demand: BFD handshake is completed but no periodic BFD control packets are exchanged as this mode assumes system has its own way of verifying connectivity with peer and may trigger BFD verification on demand, i.e. when it needs to use it according to its implementation.BIG-IP currently does not support this mode. Asynchronous + Echo Function: When enabled, TMM literally loops BFDecho-specificcontrol packetson UDP port 3785sent from peers back to them without processing it as it wasn't enough that this protocol is already lightweight. In this mode, a less aggressive timer (> 1 second) should be used for regularBFD control packets over port 3784 and more aggressive timer is used by echo function.BIG-IP currently does not support this mode. Header Fields Protocol Version:BFD version used. Latest one is v1 (RFC5880) Diagnostic Code: BFD error code for diagnostics purpose. Session State: How transmitting system sees the session state which can be AdminDown, Down, Init or Up. Message Flags:Additional session configuration or functionality (e.g. flag that says authentication is enabled) Detect Time Multiplier:Informs remote peer BFD session is supposed to be marked down ifDesired Min TX Intervalmultiplied by this value is reached Message Length(bytes):Length of BFD Control packet My Discriminator:For each BFD session each peer will use a unique discriminator to differentiate multiple session. Your Discriminator:When BIG-IP receives BFD control message back from its peer we add peer's My Discriminator to Your Discriminator in our header. Desired Min TX Interval(microseconds):Fastest we can send BFD control packets to remote peer (no less than configured value here) Required Min RX Interval(microseconds):Fastest we can receive BFD control packets from remote peer (no less than configured value here) Required Min Echo Interval(microseconds):Fastest we can loop BFD echo packets back to remote system (0 means Echo function is disabled) Session State AdminDown:Administratively forced down by command Down: Either control detection time expired in an already established BFD session or it never came up.If probing time (min_tx) is set to 100ms for example, and multiplier is 3 then no response after 300ms makes system go down. Init:Signals a desire to bring session up in the beginning of BFD handshake. Up:Indicates session is Up Message Flags Poll:Pool flag is just a 'ping' that requires peer box to respond with Final flag. In BFD handshake as well as in Demand mode pool message is a request to validate bidirectional connectivity. Final:Sent in response to packet with Poll bit set Control Plane Independent:Set if BFD can continue to function if control plane is disrupted¹ Authentication Present:Only set if authentication is being used Demand:If set, it is implied that periodic BFD control packets are no longer sent and another mechanism (on demand) is used instead. Multipoint:Reserved for future use of point-to-multipoint extension. Should be 0 on both sides. ¹ This is the case for BIG-IP as BFD is implemented in forwarding plane (TMM) BFD Configuration Configure desired transmit and receive intervals as well as multiplier on BIG-IP. And Cisco Router: You will typically configure the above regardless of routing protocol used. BFD BGP Configuration And Cisco Router: BFD OSPFv2/v3 Configuration BFD ISIS Configuration BFD RIPv1/v2 Configuration BFD Static Configuration All interfaces no matter what: Specific interface only: Tie BFD configuration to static route:9.4KViews0likes7CommentsBig-IP and ADFS Part 1 – “Load balancing the ADFS Farm”
Just like the early settlers who migrated en masse across the country by wagon train along the Oregon Trail, enterprises are migrating up into the cloud. Well okay, maybe not exactly like the early settlers. But, although there may not be a mass migration to the cloud, it is true that more and more enterprises are moving to cloud-based services like Office 365. So how do you provide seamless, or at least relatively seamless, access to resources outside of the enterprise? Well, one answer is federation and if you are a Microsoft shop then the current solution is ADFS, (Active Directory Federation Services). The ADFS server role is a security token service that extends the single sign-on, (SSO) experience for directory-authenticated clients to resources outside of the organization’s boundaries. As cloud-based application access and federation in general becomes more prevalent, the role of ADFS has become equally important. Below, is a typical deployment scenario of the ADFS Server farm and the ADFS Proxy server farm, (recommended for external access to the internally hosted ADFS farm). Warning…. If the ADFS server farm is unavailable then access to federated resources will be limited if not completely inaccessible. To ensure high-availability, performance, and scalability the F5 Big-IP with LTM, (Local Traffic Manager), can be deployed to load balance the ADFS and ADFS Proxy server farms. Yes! When it comes to a load balancing and application delivery, F5’s Big-IP is an excellent choice. Just had to get that out there. So let’s get technical! Part one of this blog series addresses deploying and configuring the Big-IP’s LTM module for load balancing the ADFS Server farm and Proxy server farm. In part two I’m going to show how we can greatly simplify and improve this deployment by utilizing Big-IP’s APM, (Access Policy Manager) so stay tuned. Load Balancing the Internal ADFS Server Farm Assumptions and Product Deployment Documentation - This deployment scenario assumes an ADFS server farm has been installed and configured per the deployment guide including appropriate trust relationships with relevant claims providers and relying parties. In addition, the reader is assumed to have general administrative knowledge of the BIG-IP LTM module. If you want more information or guidance please check out F5’s support site, ASKF5. The following diagram shows a typical, (albeit simplified) process flow of the Big-IP load balanced ADFS farm. Client attempts to access the ADFS-enabled external resource; Client is redirected to the resource’s applicable federation service; Client is redirected to its organization’s internal federation service, (assuming the resource’s federation service is configured as trusted partner); The ADFS server authenticates the client to active directory; The ADFS server provides the client with an authorization cookie containing the signed security token and set of claims for the resource partner; The client connects to the resource partner federation service where the token and claims are verified. If appropriate, the resource partner provides the client with a new security token; and The client presents the new authorization cookie with included security token to the resource for access. VIRTUAL SERVER AND MEMBER POOL – A virtual server, (aka VIP) is configured to listen on port 443, (https). In the event that the Big-IP will be used for SSL bridging, (decryption and re-encryption), the public facing SSL certificate and associated private key must be installed on the BIG-IP and associated client SSL profile created. However, as will be discussed later SSL bridging is not the preferred method for this type of deployment. Rather, SSL tunneling, (pass-thru) will be utilized. ADFS requires Transport Layer Security and Secure Sockets Layer (TLS/SSL). Therefore pool members are configured to listen on port 443, (https). LOAD BALANCING METHOD – The ‘Least Connections (member)’ method is utilized. POOL MONITOR – To ensure the AD FS service is responding as well as the web site itself, a customized monitor can be used. The monitor ensures the AD FS federation service is responding. Additionally, the monitor utilizes increased interval and timeout settings. The custom https monitor requires domain credentials to validate the service status. A standard https monitor can be utilized as an alternative. PERSISTENCE – In this AD FS scenario, clients establish a single TCP connection with the AD FS server to request and receive a security token. Therefore, specifying a persistence profile is not necessary. SSL TUNNELING, (preferred method) – When SSL tunneling is utilized, encrypted traffic flows from the client directly to the endpoint farm member. Additionally, SSL profiles are not used nor are SSL certificates required to be installed on the Big-IP. In this instance Big-IP profiles requiring packet analysis and/or modification, (ex. compression, web acceleration) will not be relevant. To further boost the performance, a Fast L4 virtual server will be used. Load Balancing the ADFS Proxy Server Farm Assumptions and Product Deployment Documentation - This deployment scenario assumes an ADFS Proxy server farm has been installed and configured per the deployment guide including appropriate trust relationships with relevant claims providers and relying parties. In addition, the reader is assumed to have general administrative knowledge of the BIG-IP LTM module. If you want more information or guidance please check out F5’s support site, ASKF5. In the previous section we configure load balancing for an internal AD FS Server farm. That scenario works well for providing federated SSO access to internal users. However, it does not address the need of the external end-user who is trying to access federated resources. This is where the AD FS proxy server comes into play. The AD FS proxy server provides external end-user SSO access to both internal federation-enabled resources as well as partner resources like Microsoft Office 365. Client attempts to access the AD FS-enabled internal or external resource; Client is redirected to the resource’s applicable federation service; Client is redirected to its organization’s internal federation service, (assuming the resource’s federation service is configured as trusted partner); The AD FS proxy server presents the client with a customizable sign-on page; The AD FS proxy presents the end-user credentials to the AD FS server for authentication; The AD FS server authenticates the client to active directory; The AD FS server provides the client, (via the AD FS proxy server) with an authorization cookie containing the signed security token and set of claims for the resource partner; The client connects to the resource partner federation service where the token and claims are verified. If appropriate, the resource partner provides the client with a new security token; and The client presents the new authorization cookie with included security token to the resource for access. VIRTUAL SERVER AND MEMBER POOL – A virtual server is configured to listen on port 443, (https). In the event that the Big-IP will be used for SSL bridging, (decryption and re-encryption), the public facing SSL certificate and associated private key must be installed on the BIG-IP and associated client SSL profile created. ADFS requires Transport Layer Security and Secure Sockets Layer (TLS/SSL). Therefore pool members are configured to listen on port 443, (https). LOAD BALANCING METHOD – The ‘Least Connections (member)’ method is utilized. POOL MONITOR – To ensure the web servers are responding, a customized ‘HTTPS’ monitor is associated with the AD FS proxy pool. The monitor utilizes increased interval and timeout settings. "To SSL Tunnel or Not to SSL Tunnel” When SSL tunneling is utilized, encrypted traffic flows from the client directly to the endpoint farm member. Additionally, SSL profiles are not used nor are SSL certificates required to be installed on the Big-IP. However, some advanced optimizations including HTTP compression and web acceleration are not possible when tunneling. Depending upon variables such as client connectivity and customization of ADFS sign-on pages, an ADFS proxy deployment may benefit from these HTTP optimization features. The following two options, (SSL Tunneling and SSL Bridging) are provided. SSL TUNNELING - In this instance Big-IP profiles requiring packet analysis and/or modification, (ex. compression, web acceleration) will not be relevant. To further boost the performance, a Fast L4 virtual server will be used. Below is an example of the Fast L4 Big-IP Virtual server configuration in SSL tunneling mode. SSL BRIDGING – When SSL bridging is utilized, traffic is decrypted and then re-encrypted at the Big-IP device. This allows for additional features to be applied to the traffic on both client-facing and pool member-facing sides of the connection. Below is an example of the standard Big-IP Virtual server configuration in SSL bridging mode. Standard Virtual Server Profiles - The following list of profiles is associated with the AD FS proxy virtual server. Well that’s it for Part 1. Along with the F5 business development team for the Microsoft global partnership I want to give a big thanks to the guys at Ensynch, an Insight Company - Kevin James, David Lundell, and Lutz Mueller Hipper for reviewing and providing feedback. Stay tuned for Big-IP and ADFS Part 2 – “APM – An Alternative to the ADFS Proxy”. Additional Links: Big-IP and ADFS Part 2 – “APM–An Alternative to the ADFS Proxy” Big-IP and ADFS Part 3 - “ADFS, APM, and the Office 365 Thick Clients”5.2KViews0likes3CommentsHTTP Pipelining: A security risk without real performance benefits
Everyone wants web sites and applications to load faster, and there’s no shortage of folks out there looking for ways to do just that. But all that glitters is not gold, and not all acceleration techniques actually do all that much to accelerate the delivery of web sites and applications. Worse, some actual incur risk in the form of leaving servers open to exploitation. A BRIEF HISTORY Back in the day when HTTP was still evolving, someone came up with the concept of persistent connections. See, in ancient times – when administrators still wore togas in the data center – HTTP 1.0 required one TCP connection for every object on a page. That was okay, until pages started comprising ten, twenty, and more objects. So someone added an HTTP header, Keep-Alive, which basically told the server not to close the TCP connection until (a) the browser told it to or (b) it didn’t hear from the browser for X number of seconds (a time out). This eventually became the default behavior when HTTP 1.1 was written and became a standard. I told you it was a brief history. This capability is known as a persistent connection, because the connection persists across multiple requests. This is not the same as pipelining, though the two are closely related. Pipelining takes the concept of persistent connections and then ignores the traditional request – reply relationship inherent in HTTP and throws it out the window. The general line of thought goes like this: “Whoa. What if we just shoved all the requests from a page at the server and then waited for them all to come back rather than doing it one at a time? We could make things even faster!” Tada! HTTP pipelining. In technical terms, HTTP pipelining is initiated by the browser by opening a connection to the server and then sending multiple requests to the server without waiting for a response. Once the requests are all sent then the browser starts listening for responses. The reason this is considered an acceleration technique is that by shoving all the requests at the server at once you essentially save the RTT (Round Trip Time) on the connection waiting for a response after each request is sent. WHY IT JUST DOESN’T MATTER ANYMORE (AND MAYBE NEVER DID) Unfortunately, pipelining was conceived of and implemented before broadband connections were widely utilized as a method of accessing the Internet. Back then, the RTT was significant enough to have a negative impact on application and web site performance and the overall user-experience was improved by the use of pipelining. Today, however, most folks have a comfortable speed at which they access the Internet and the RTT impact on most web application’s performance, despite the increasing number of objects per page, is relatively low. There is no arguing, however, that some reduction in time to load is better than none. Too, anyone who’s had to access the Internet via high latency links can tell you anything that makes that experience faster has got to be a Good Thing. So what’s the problem? The problem is that pipelining isn’t actually treated any differently on the server than regular old persistent connections. In fact, the HTTP 1.1 specification requires that a “server MUST send its responses to those requests in the same order that the requests were received.” In other words, the requests are return in serial, despite the fact that some web servers may actually process those requests in parallel. Because the server MUST return responses to requests in order that the server has to do some extra processing to ensure compliance with this part of the HTTP 1.1 specification. It has to queue up the responses and make certain responses are returned properly, which essentially negates the performance gained by reducing the number of round trips using pipelining. Depending on the order in which requests are sent, if a request requiring particularly lengthy processing – say a database query – were sent relatively early in the pipeline, this could actually cause a degradation in performance because all the other responses have to wait for the lengthy one to finish before the others can be sent back. Application intermediaries such as proxies, application delivery controllers, and general load-balancers can and do support pipelining, but they, too, will adhere to the protocol specification and return responses in the proper order according to how the requests were received. This limitation on the server side actually inhibits a potentially significant boost in performance because we know that processing dynamic requests takes longer than processing a request for static content. If this limitation were removed it is possible that the server would become more efficient and the user would experience non-trivial improvements in performance. Or, if intermediaries were smart enough to rearrange requests such that they their execution were optimized (I seem to recall I was required to design and implement a solution to a similar example in graduate school) then we’d maintain the performance benefits gained by pipelining. But that would require an understanding of the application that goes far beyond what even today’s most intelligent application delivery controllers are capable of providing. THE SILVER LINING At this point it may be fairly disappointing to learn that HTTP pipelining today does not result in as significant a performance gain as it might at first seem to offer (except over high latency links like satellite or dial-up, which are rapidly dwindling in usage). But that may very well be a good thing. As miscreants have become smarter and more intelligent about exploiting protocols and not just application code, they’ve learned to take advantage of the protocol to “trick” servers into believing their requests are legitimate, even though the desired result is usually malicious. In the case of pipelining, it would be a simple thing to exploit the capability to enact a layer 7 DoS attack on the server in question. Because pipelining assumes that requests will be sent one after the other and that the client is not waiting for the response until the end, it would have a difficult time distinguishing between someone attempting to consume resources and a legitimate request. Consider that the server has no understanding of a “page”. It understands individual requests. It has no way of knowing that a “page” consists of only 50 objects, and therefore a client pipelining requests for the maximum allowed – by default 100 for Apache – may not be seen as out of the ordinary. Several clients opening connections and pipelining hundreds or thousands of requests every second without caring if they receive any of the responses could quickly consume the server’s resources or available bandwidth and result in a denial of service to legitimate users. So perhaps the fact that pipelining is not really all that useful to most folks is a good thing, as server administrators can disable the feature without too much concern and thereby mitigate the risk of the feature being leveraged as an attack method against them. Pipelining as it is specified and implemented today is more of a security risk than it is a performance enhancement. There are, however, tweaks to the specification that could be made in the future that might make it more useful. Those tweaks do not address the potential security risk, however, so perhaps given that there are so many other optimizations and acceleration techniques that can be used to improve performance that incur no measurable security risk that we simply let sleeping dogs lie. IMAGES COURTESTY WIKIPEDIA COMMONS4.5KViews0likes5CommentsBig-IP and ADFS Part 2 - APM: An Alternative to the ADFS Proxy
So let’s talk Application Delivery Controllers, (ADC). In part one of this series we deployed both an internal ADFS farm as well as a perimeter ADFS proxy farm using the Big-IP’s exceptional load balancing capabilities to provide HA and scalability. But there’s much more the Big-IP can provide to the application delivery experience. Here in part 2 we’ll utilize the Access Policy Manager, (APM) module as a replacement for the ADFS Proxy layer. To illustrate this approach, we’ll address one of the most common use cases; ADFS deployment to federate with and enable single sign-on to Microsoft Office 365 web-based applications. The purpose of the ADFS Proxy server is to receive and forward requests to ADFS servers that are not accessible from the Internet. As noted in part one, for high availability this typically requires a minimum of two proxy servers as well as an additional load balancing solution, (F5 Big-IPs of course). By implementing APM on the F5 appliance(s) we not only eliminate the need for these additional servers but, by implementing pre-authentication at the perimeter and advanced features such as client-side checks, (antivirus validation, firewall verification, etc.), arguably provide for a more secure deployment. Assumptions and Product Deployment Documentation - This deployment scenario assumes the reader is assumed to have general administrative knowledge of the BIG-IP LTM module and basic understanding of the APM module. If you want more information or guidance please check out F5’s support site, ASKF5. The following diagram shows a typical internal and external client access AD FS to Office 365 Process Flow, (used for passive-protocol, “web-based” access). Both clients attempts to access the Office 365 resource; Both clients are redirected to the resource’s applicable federation service, (Note: This step may be skipped with active clients such as Microsoft Outlook); Both client are redirected to their organization’s internal federation service; The AD FS server authenticates the client to active directory; * Internal clients are load balanced directly to an ADFS server farm member; and * External clients are: * Pre-authenticated to Active Directory via APM’s customizable sign-on page; *Authenticated users are directed to an AD FS server farm member. The ADFS server provides the client with an authorization cookie containing the signed security token and set of claims for the resource partner; The client connects to the Microsoft Federation Gateway where the token and claims are verified. The Microsoft Federation Gateway provides the client with a new service token; and The client presents the new cookie with included service token to the Office 365 resource for access. Virtual Servers and Member Pool – Although all users, (both internal and external) will access the ADFS server farm via the same Big-IP(s), the requirements and subsequent user experience differ. While internal authenticated users are load balanced directly to the ADFS farm, external users must first be pre-authenticated, (via APM) prior to be allowed access to an ADFS farm member. To accomplish this two, (2) virtual servers are used; one for the internal access and another dedicated for external access. Both the internal and external virtual servers are associated with the same internal ADFS server farm pool. INTERNAL VIRTUAL SERVER – Refer to Part 1 of this guidance for configuration settings for the internal ADFS farm virtual server. EXTERNAL VIRTUAL SERVER – The configuration for the external virtual server is similar to that of the virtual server described in Part 1 of this guidance. In addition an APM Access Profile, (see highlighted section and settings below) is assigned to the virtual server. APM Configuration – The following Access Policy Manager, (APM) configuration is created and associated with the external virtual server to provide for pre-authentication of external users prior to being granted access to the internal ADFS farm. As I mentioned earlier, the APM module provides advanced features such as client-side checks and single sign-on, (SSO) in addition to pre-authentication. Of course this is just the tip of the iceberg. Take a deeper look at client-side checks at AskF5. AAA SERVER - The ADFS access profile utilizes an Active Directory AAA server. ACCESS POLICY - The following access policy is associated with the ADFS access profile. * Prior to presenting the logon page client machines are checked for the existence of updated antivirus. If the client lacks either antivirus software or does not have updated, (within 30 days) virus definitions the user is redirected to a mitigation site. * An AD query and simple iRule is used to provide single-url OWA access for both on-premise and Office365 Exchange users. SSO CONFIGURATION - The ADFS access portal uses an NTLM v1 SSO profile with multiple authentication domains, (see below). By utilizing multiple SSO domains, clients are required to authenticate only once to gain access to both hosted applications such as Exchange Online and SharePoint Online as well as on-premise hosted applications. To facilitate this we deploy multiple virtual servers, (ADFS, Exchange, SharePoint) utilizing the same SSO configuration. CONNECTIVITY PROFILE – A connectivity profile based upon the default connectivity profile is associated with the external virtual server. Whoa! That’s a lot to digest. But if nothing else, I hope this inspires you to further investigate APM and some of the cool things you can do with the Big-IP beyond load balancing. Additional Links: Big-IP and ADFS Part 1 – “Load balancing the ADFS Farm” Big-IP and ADFS Part 3 - “ADFS, APM, and the Office 365 Thick Clients” BIG-IP Access Policy Manager (APM) Wiki Home - DevCentral Wiki Latest F5 Information F5 News Articles F5 Press Releases F5 Events F5 Web Media F5 Technology Alliance Partners F5 YouTube Feed4.2KViews0likes7CommentsHow to use Ansible with Cisco routers
Quick Intro For those who don't know, there is an Ansible plugin callednetwork_clito retrieve network device configuration for backup, inspection and even execute commands. So, let's assume we have Ansible already installed and 2 routers: I used Debian Linux here and I had to install Python 3: I've also installed pip as we can see above because I wanted to install a specific version of Ansible (2.5.+) that would allow myself to use network_cli plugin: Note: we can list available Ansible versions by just typingpip install ansible== I've also created a user namedansible: Edited Linuxsudoersfile withvisudocommand: And addedAnsible user permission to run root commands without prompting for password so my file looked liked this: Quick Set Up This is my directory structure: These are the files I used for this lab test: Note: we can replace cisco1.rodrigo.example for an IP address too. In Ansible, there is a default config file (ansible.cfg) where we store the global config, i.e. how we want Ansible to behave. We also keep the list of our hosts into an inventory file (inventory.yml here). There is a default folder (group_vars) where we can store variables that would apply to any router we ran Ansible against and in this case it makes sense as my router credentials are the same. Lastly, retrieve_backup.yml is my actual playbook, i.e. where I tell Ansible what to do. Note: I manually logged in to cisco1.rodrigo.example and cisco2.rodrigo.example to populate ssh known_hosts files, otherwise Ansible complains these hosts are untrusted. Populating our Playbook file retrieve_backup.yml Let's say we just want to retrieve the OSPF configuration from our Cisco routers. We can useios_commandto type in any command to Cisco router and useregisterto store the output to a variable: Note: be careful with the indentation. I used 2 spaces here. We can then copy the content of the variable to a file in a given directory. In this case, we copied whatever is inospf_outputvariable toospf_configdirectory. From the Playbook file above we can work out that variables are referenced between{{ }}and we might probably be wondering why do we need to append stdout[0] to ospf_output right? If you know Python, you might be interested in knowing a bit more about what's going on under the hood so I'll clarify things a bit more here. The variableospf_outputis actually a dictionary andstdoutis one of its keys. In reality, ospf_output.stdout could be represented as ospf_output['stdout'] We add the[0] because the object retrieved by the key stdout is not a string. It's a list! And[0] just represents the first object in the list. Executing our Playbook I'll create ospf_config first: And we execute our playbook by issuingansible-playbookcommand: Now let's check if our OSPF config was retrieved: We can pretty much type in any IOS command we'd type in a real router, either to configure it or to retrieve its configuration. We could also append the date to the file name but it's out of the scope of this article. That's it for now.3.5KViews1like1CommentAdding a network interface to a Big-IP VE?
I have a Big-IP running v14.1.4.6 and need to add another network interface. At the moment, interfaces 1.1, 1.2 and 1.3 are configured, but I see no option in the GUI to add a fourth. According to the server team folks there's a fourth network adapter configured (in VMware, I believe), but I'm at a loss regarding how to create a fourth one on the F5. I did find the command below (modified for what I need) for adding an interface in another post, but was unable to get it to work. tmsh create net vlan vlan103 interfaces add { 1.4 { untagged } } Am I going about this the wrong way? It's odd that adding an interface can't simply be done via the GUI. Thanks!Solved2.3KViews0likes2CommentsvCMP logical interfaces throughput
Hello, we currently have 2 BIG-IP 15800 each one connected with 2 100Gb interfaces. So i have a guest vcmp with 8vCPU and 8 logical interfaces 0.1, 0.2, 0.3 and so on to 0.8. In the cli-console or at my zabbix those interfaces are detected as 10Gb each, and i can see traffic in all of them... My question is, are those virtual interfaces capped at 10Gb ? Or in another words, how much bandwidth do i have on this vCMP?Solved2.1KViews0likes6CommentsMost likely cause of network input errors?
I have an HA pair of LTMs running 10.2.3. On one vlan I am incrementing input errors at the same exact rate on both the active and passive units. Discussing with our network engineer, he says he has seen this before at another job, but can't quite remember the cause. He believes it is a case of the LTMs not understanding some type of traffic coming across the port and dropping it as a result. Have any of you ever encountered anything like this? Thanks, Chris1.1KViews0likes6CommentsConnection loss Client -> F5 BIGIP LTM
Hi all, I am currently experiencing an issue with an application that is being used on 3 application servers (windows server 2003), loadbalanced behind the F5 BIGIP. Users are sometimes losing connection to the server, which makes the application crash. I have launched a capture for one of these clients and I'm seeing the following when this issue occurs (capture.png): Client: 10.229.237.235, IP of virtual server on BIGIP: 172.20.5.41 From what I can see there is no SYN-ACK being returned from BIGIP. There are also a lot of messages in the log containing TCP Window Full & TCP out of order. When we let the user connect directly to an application server instead of passing through BIGIP, they have no issues. The capture is also very clean in that case, no retransmissions, no duplicate acks or TCP resets.. The TCP protocol being used is Protocol Profile (Client) - TCP LAN Optimized and for Protocol Profile (Server) - TCP WAN Optimized. Does anyone have an idea why BIGIP doesn't send a SYN-ACK in this case? I was thinking maybe an issue with receiving window & send buffers.. Or would I need a capture on the virtual server to further analyze this behaviour? Any help would be greatly appreciated! Thank you Kind regards Ron999Views0likes6Comments