nap
5 TopicsThe WAF Dilemma
We are always facing the dilemma "Security vs Usability" in the world of security. This becomes painfully obvious once you start implementing a WAF. I have now implemented a wide range of WAF security policies, both BigIP AWAF and NAP, and two application functions/features always stand out: file upload and wiki editors. The core problem with the two scenarios is that they are about handling unstructured data. No matter how hard you try to tune the policy you will have an endless amount of false positives interrupting the end users. If we don't handle this problem correctly we will be forced (aka being demanded by the business) to disable the WAF policy. And that is a loose-loose situation. What I have constructed is a way to minimize this problem by differentiate between authenticated and unauthenticated end users. In most situations we can have a higher level of trust in traffic that is authenticated and thus tune down on the security. My design is very binary, if you are authenticated the WAF is turned off, if not it is on. This might not be good enough for you but this is only an example on how to go about the core problem. You can fine-tune the solution to be more granular based on the information available like switching the security policy or other mitigating actions. Just remember that having a simple WAF is always better than not having any at all. You can find the details, configuration and code here: NGINX App Protect with Authentication | Wiki As always feedback is much appreciated!146Views2likes6CommentsNGINX App Protect v5 Signature Notifications
When working with NAP (NGINX App Protect) you don't have an easy way of knowing when any of the signatures are updated. As an old BigIP guy I find that rather strange. Here you have build-in automatic updates and notifications. Unfortunately there isn't any API's you can probe which would have been the best way of doing it. Hopefully it will come one day. However, "friction" and "hard" will not keep me from finding a solution š I have previously made a solution for NAPv4 and I have tried mentally to get me going on a NAPv5 version. The reason for the delay is in the different way NAPv4 and NAPv5 are designed. Where NAPv4 is one module loaded in NGINX, NAPv5 is completely detached from NGINX (well almost, you still need to load a small module to get the traffic from NGINX to NAP) and only works with containers. NAPv5 has moved the signature "storage" from the actual host it is running on (e.g. an installed package) to the policy. This has the consequence that finding a valid "source of truth", for the latest signature versions, is not as simple as building a new image and see which versions got installed. There are very good reasons for this design that I will come back to later. When you fire up NAPv5 you got three containers for the data plane (NGINX, waf-enforcer and waf-config-mgr) and one for the "control plane" (waf-compiler). For this solution the "control plane" is the useful one. It isn't really a control plane but it gives a nice picture of how it is detached from the actual processing of traffic. When you update your signatures you are actually doing it through the waf-compiler. The waf-compiler is a container hosting the actual signature databases and every time a new verison is released you need to rebuild this container and compile your policies into a new version and reload NGINX. And this is what I take advantage of when I look for signature updates. It has the upside that you only need the waf-compiler to get the information you need. My solution will take care of the entire process and make sure that you are always running with the latest signatures. Back to the reason why the split of functions is a very good thing. When you build a new version of the NGINX image and deploy it into production, NAP needs to compile the policies as they load. During the compilation NGINX is not moving any traffic! This becomes a annoying problem even when you have a low number of policies. I have installations where it takes 5 to 10 minutes from deployment of the new image until it starts moving traffic. That is a crazy long time when you are used to working with micro-services and expect everything to flip within seconds. If you have your NAPv4 hooked up to a NGINX Instance Manager (NIM) the problem is somewhat mitigated as NIM will compile the policies before sending them to the gateways. NIM is not a nimble piece of software so it doesn't always fit into the environment. And now here is my hack to the notification problem: The solution consist of two bash scripts and one html template. The template is used when sending a notification mail. I wanted it to be pretty and that was easiest with html. Strictly speaking you could do with just a simple text based mail. Save all three in the same directory. The main script is called "waf_policy_auto_compile.sh"and is the one you put into crontab. The main script will build a new waf-compiler image and compile a test policy. The outcome of that is information about what versions are the newest. It will then extract versions from an old policy and simply see if any of the versions differ. For this to work you need to have an uncompiled policy (you can just use the default one) and a compiled version of it ready beforehand. When a diff has been identified the notification logic is executed and a second script is called: "compile_waf_policies.sh". It basically just trawls through the directory of you policies and logging profiles and compiles a new version of them all. It is not necessary to recompile the logging profiles, so this will probably change in the next version. As the compilation completes the main script will nudge NGINX to reload thus implement all the new versions. You can run "waf_policy_auto_compile.sh" with a verbose flag (-v) and a debug flag (-d). The verbose flag is intended to be used when you run it on a terminal and want the information displayed there. Debug is, well, for debug š The construction of the scripts are based on my own needs but they should be easy to adjust for any need. I will be happy for any feedback, so please don't hold back š version_report_template.html: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>WAF Policy Version Report</title> <style> body { font-family: system-ui, sans-serif; } .ok { color: #28a745; font-weight: bold; } .warn { color: #f0ad4e; font-weight: bold; } .section { margin-bottom: 1.2em; } .label { font-weight: bold; } </style> </head> <body> <h2>WAF Policy Version Report</h2> <div class="section"> <div class="label">Attack Signatures:</div> <div>Current: <span>{{ATTACK_OLD}}</span></div> <div>New: <span>{{ATTACK_NEW}}</span></div> <div>Status: <span class="{{ATTACK_CLASS}}">{{ATTACK_STATUS}}</span></div> </div> <div class="section"> <div class="label">Bot Signatures:</div> <div>Current: <span>{{BOT_OLD}}</span></div> <div>New: <span>{{BOT_NEW}}</span></div> <div>Status: <span class="{{BOT_CLASS}}">{{BOT_STATUS}}</span></div> </div> <div class="section"> <div class="label">Threat Campaigns:</div> <div>Current: <span>{{THREAT_OLD}}</span></div> <div>New: <span>{{THREAT_NEW}}</span></div> <div>Status: <span class="{{THREAT_CLASS}}">{{THREAT_STATUS}}</span></div> </div> <div>Run completed: {{RUN_DATETIME}}</div> </body> </html> compile_waf_policies.sh: #!/bin/bash # ============================================================================== # Script Name: compile_waf_policies.sh # # Description: # Compiles: # 1. WAF policy JSON files from the 'policies' directory # 2. WAF logging JSON files from the 'logging' directory # using the 'waf-compiler-latest:custom' Docker image. Output goes to # '/opt/napv5/app_protect_etc_config' where NGINX and waf-config-mgr # can reach them. # # Requirements: # - Docker installed and accessible # - Docker image 'waf-compiler-latest:custom' present locally # # Usage: # ./compile_waf_policies.sh # ============================================================================== set -euo pipefail IFS=$'\n\t' SECONDS=0 # Track total execution time # ======================== # CONFIGURABLE VARIABLES # ======================== BASE_DIR="/root/napv5/waf-compiler" OUTPUT_DIR="/opt/napv5/app_protect_etc_config" POLICY_INPUT_DIR="$BASE_DIR/policies" POLICY_OUTPUT_DIR="$OUTPUT_DIR" LOGGING_INPUT_DIR="$BASE_DIR/logging" LOGGING_OUTPUT_DIR="$OUTPUT_DIR" GLOBAL_SETTINGS="$BASE_DIR/global_settings.json" DOCKER_IMAGE="waf-compiler-latest:custom" # ======================== # VALIDATION # ======================== echo "š§ Validating paths..." [[ -d "$POLICY_INPUT_DIR" ]] || { echo "ā Error: Policy input directory '$POLICY_INPUT_DIR' does not exist."; exit 1; } [[ -f "$GLOBAL_SETTINGS" ]] || { echo "ā Error: Global settings file '$GLOBAL_SETTINGS' not found."; exit 1; } mkdir -p "$POLICY_OUTPUT_DIR" mkdir -p "$LOGGING_OUTPUT_DIR" # ======================== # POLICY COMPILATION # ======================== echo "š¦ Compiling WAF policies from: $POLICY_INPUT_DIR" for POLICY_FILE in "$POLICY_INPUT_DIR"/*.json; do [[ -f "$POLICY_FILE" ]] || continue BASENAME=$(basename "$POLICY_FILE" .json) OUTPUT_FILE="$POLICY_OUTPUT_DIR/${BASENAME}.tgz" echo "āļø [Policy] Compiling $(basename "$POLICY_FILE") -> $(basename "$OUTPUT_FILE")" docker run --rm \ -v "$POLICY_INPUT_DIR":"$POLICY_INPUT_DIR" \ -v "$POLICY_OUTPUT_DIR":"$POLICY_OUTPUT_DIR" \ -v "$(dirname "$GLOBAL_SETTINGS")":"$(dirname "$GLOBAL_SETTINGS")" \ "$DOCKER_IMAGE" \ -g "$GLOBAL_SETTINGS" \ -p "$POLICY_FILE" \ -o "$OUTPUT_FILE" done # ======================== # LOGGING COMPILATION # ======================== echo "š Compiling WAF logging configs from: $LOGGING_INPUT_DIR" if [[ -d "$LOGGING_INPUT_DIR" ]]; then for LOG_FILE in "$LOGGING_INPUT_DIR"/*.json; do [[ -f "$LOG_FILE" ]] || continue BASENAME=$(basename "$LOG_FILE" .json) OUTPUT_FILE="$LOGGING_OUTPUT_DIR/${BASENAME}.tgz" echo "āļø [Logging] Compiling $(basename "$LOG_FILE") -> $(basename "$OUTPUT_FILE")" docker run --rm \ -v "$LOGGING_INPUT_DIR":"$LOGGING_INPUT_DIR" \ -v "$LOGGING_OUTPUT_DIR":"$LOGGING_OUTPUT_DIR" \ "$DOCKER_IMAGE" \ -l "$LOG_FILE" \ -o "$OUTPUT_FILE" done else echo "ā ļø Skipping logging config compilation: directory '$LOGGING_INPUT_DIR' does not exist." fi # ======================== # COMPLETION MESSAGE # ======================== RUNTIME=$SECONDS printf "\nā Compilation complete.\n" echo " - Policies output: $POLICY_OUTPUT_DIR" echo " - Logging output: $LOGGING_OUTPUT_DIR" echo printf "ā±ļø Total time taken: %02d minutes %02d seconds\n" $((RUNTIME / 60)) $((RUNTIME % 60)) echo waf_policy_auto_compile.sh: #!/bin/bash ############################################################################### # waf_policy_auto_compile.sh # # - Only prints colorized summary output to terminal if -v/--verbose is used # - Mails a styled HTML report using a template, substituting version numbers/status/colors # - Debug output (step_log) only to syslog if -d/--debug is used # - Otherwise: completely silent except for errors # - All main blocks are modularized in functions ############################################################################### set -euo pipefail IFS=$'\n\t' # ===== CONFIGURABLE VARIABLES ===== WORKROOT="/root/napv5" WORKDIR="$WORKROOT/waf-compiler" DOCKERFILE="$WORKDIR/Dockerfile" BUNDLE_DIR="$WORKDIR/test" NEW_BUNDLE="$BUNDLE_DIR/test_new.tgz" OLD_BUNDLE="$BUNDLE_DIR/test_old.tgz" NEW_META="$BUNDLE_DIR/test_new_meta.json" COMPILER_IMAGE="waf-compiler-latest:custom" EMAIL_RECIPIENT="example@example.com" EMAIL_SUBJECT="WAF Compiler Update Notification" NGINX_RELOAD_CMD="docker exec nginx-plus nginx -s reload" HTML_TEMPLATE="$WORKDIR/version_report_template.html" HTML_REPORT="$WORKDIR/version_report.html" VERBOSE=0 DEBUG=0 # ===== DEBUG AND ERROR LOGGING ===== exec 2> >(tee -a /tmp/waf_policy_auto_compile_error.log | /usr/bin/logger -t waf_policy_auto_compile_error) step_log() { if [ "$DEBUG" -eq 1 ]; then echo "DEBUG: $1" | /usr/bin/logger -t waf_policy_auto_compile fi } # ===== ARGUMENT PARSING ===== while [[ $# -gt 0 ]]; do case "$1" in -v|--verbose) VERBOSE=1 shift ;; -d|--debug) DEBUG=1 echo "Debug log can be found in the syslog..." shift ;; -*) echo "Unknown option: $1" >&2 exit 1 ;; *) shift ;; esac done # ----- LOG INITIAL ENVIRONMENT IF DEBUG ----- step_log "waf_policy_auto_compile starting (PID $$)" step_log "Script PATH: $PATH" step_log "which docker: $(which docker 2>/dev/null)" step_log "which jq: $(which jq 2>/dev/null)" # ===== COLOR DEFINITIONS ===== color_reset="\033[0m" color_green="\033[1;32m" color_yellow="\033[1;33m" # ===== LOGGING FUNCTIONS ===== log() { # Only log to terminal if VERBOSE is enabled if [ "$VERBOSE" -eq 1 ]; then echo "[$(date --iso-8601=seconds)] $*" fi } # ===== HTML REPORT GENERATOR ===== generate_html_report() { local attack_old="$1" local attack_new="$2" local attack_status="$3" local attack_class="$4" local bot_old="$5" local bot_new="$6" local bot_status="$7" local bot_class="$8" local threat_old="$9" local threat_new="${10}" local threat_status="${11}" local threat_class="${12}" local datetime datetime=$(date --iso-8601=seconds) cp "$HTML_TEMPLATE" "$HTML_REPORT" sed -i "s|{{ATTACK_OLD}}|$attack_old|g" "$HTML_REPORT" sed -i "s|{{ATTACK_NEW}}|$attack_new|g" "$HTML_REPORT" sed -i "s|{{ATTACK_STATUS}}|$attack_status|g" "$HTML_REPORT" sed -i "s|{{ATTACK_CLASS}}|$attack_class|g" "$HTML_REPORT" sed -i "s|{{BOT_OLD}}|$bot_old|g" "$HTML_REPORT" sed -i "s|{{BOT_NEW}}|$bot_new|g" "$HTML_REPORT" sed -i "s|{{BOT_STATUS}}|$bot_status|g" "$HTML_REPORT" sed -i "s|{{BOT_CLASS}}|$bot_class|g" "$HTML_REPORT" sed -i "s|{{THREAT_OLD}}|$threat_old|g" "$HTML_REPORT" sed -i "s|{{THREAT_NEW}}|$threat_new|g" "$HTML_REPORT" sed -i "s|{{THREAT_STATUS}}|$threat_status|g" "$HTML_REPORT" sed -i "s|{{THREAT_CLASS}}|$threat_class|g" "$HTML_REPORT" sed -i "s|{{RUN_DATETIME}}|$datetime|g" "$HTML_REPORT" } # ===== BUILD COMPILER IMAGE ===== build_compiler() { step_log "about to build_compiler" docker build --no-cache --platform linux/amd64 \ --secret id=nginx-crt,src="$WORKROOT/nginx-repo.crt" \ --secret id=nginx-key,src="$WORKROOT/nginx-repo.key" \ -t "$COMPILER_IMAGE" \ -f "$DOCKERFILE" "$WORKDIR" > "$WORKDIR/waf_compiler_build.log" 2>&1 || { echo "ERROR: docker build failed. Dumping build log:" | /usr/bin/logger -t waf_policy_auto_compile_error cat "$WORKDIR/waf_compiler_build.log" | /usr/bin/logger -t waf_policy_auto_compile_error exit 1 } step_log "after build_compiler" } # ===== COMPILE TEST POLICY ===== compile_test_policy() { step_log "about to compile_test_policy" docker run --rm -v "$BUNDLE_DIR:/bundle" "$COMPILER_IMAGE" \ -p /bundle/test.json -o /bundle/test_new.tgz > "$NEW_META" step_log "after compile_test_policy" if [ -f "$NEW_META" ]; then step_log "$(cat "$NEW_META")" else step_log "NEW_META does not exist" fi } # ===== CHECK OLD_BUNDLE ===== check_old_bundle() { step_log "about to check OLD_BUNDLE" if [ -f "$OLD_BUNDLE" ]; then step_log "$(ls -l "$OLD_BUNDLE")" else step_log "OLD_BUNDLE does not exist" fi } # ===== GET NEW VERSIONS FUNCTION ===== get_new_versions() { jq -r ' { "attack": .attack_signatures_package.version, "bot": .bot_signatures_package.version, "threat": .threat_campaigns_package.version }' "$NEW_META" } # ===== VERSION EXTRACTION FROM OLD BUNDLE ===== extract_bundle_versions() { docker run --rm -v "$BUNDLE_DIR:/bundle" "$COMPILER_IMAGE" \ -dump -bundle "/bundle/test_old.tgz" } extract_versions_from_dump() { extract_bundle_versions | awk ' BEGIN { print "{" } /attack-signatures:/ { in_attack=1; next } /bot-signatures:/ { in_bot=1; next } /threat-campaigns:/ { in_threat=1; next } in_attack && /version:/ { gsub("version: ", "") printf "\"attack\":\"%s\",\n", $1 in_attack=0 } in_bot && /version:/ { gsub("version: ", "") printf "\"bot\":\"%s\",\n", $1 in_bot=0 } in_threat && /version:/ { gsub("version: ", "") printf "\"threat\":\"%s\"\n", $1 in_threat=0 } END { print "}" } ' } get_old_versions() { extract_versions_from_dump } # ===== GET & PRINT VERSIONS ===== get_versions() { step_log "about to get_new_versions" new_versions=$(get_new_versions) step_log "new_versions: $new_versions" step_log "after get_new_versions" step_log "about to get_old_versions" old_versions=$(get_old_versions) step_log "old_versions: $old_versions" step_log "after get_old_versions" } # ===== VERSION COMPARISON ===== compare_versions() { step_log "compare_versions start" attack_old=$(echo "$old_versions" | jq -r .attack) attack_new=$(echo "$new_versions" | jq -r .attack) bot_old=$(echo "$old_versions" | jq -r .bot) bot_new=$(echo "$new_versions" | jq -r .bot) threat_old=$(echo "$old_versions" | jq -r .threat) threat_new=$(echo "$new_versions" | jq -r .threat) attack_status=$([[ "$attack_old" != "$attack_new" ]] && echo "Updated" || echo "No Change") bot_status=$([[ "$bot_old" != "$bot_new" ]] && echo "Updated" || echo "No Change") threat_status=$([[ "$threat_old" != "$threat_new" ]] && echo "Updated" || echo "No Change") attack_class=$([[ "$attack_status" == "Updated" ]] && echo "warn" || echo "ok") bot_class=$([[ "$bot_status" == "Updated" ]] && echo "warn" || echo "ok") threat_class=$([[ "$threat_status" == "Updated" ]] && echo "warn" || echo "ok") echo "Attack:$attack_status Bot:$bot_status Threat:$threat_status" > "$WORKDIR/status_flags.txt" [[ "$attack_status" == "Updated" ]] && attack_status_colored="${color_yellow}*** Updated ***${color_reset}" || attack_status_colored="${color_green}No Change${color_reset}" [[ "$bot_status" == "Updated" ]] && bot_status_colored="${color_yellow}*** Updated ***${color_reset}" || bot_status_colored="${color_green}No Change${color_reset}" [[ "$threat_status" == "Updated" ]] && threat_status_colored="${color_yellow}*** Updated ***${color_reset}" || threat_status_colored="${color_green}No Change${color_reset}" { echo -e "Version comparison for container \033[1mNAPv5\033[0m:\n" echo -e "Attack Signatures:" echo -e " Current Version: $attack_old" echo -e " New Version: $attack_new" echo -e " Status: $attack_status_colored\n" echo -e "Threat Campaigns:" echo -e " Current Version: $threat_old" echo -e " New Version: $threat_new" echo -e " Status: $threat_status_colored\n" echo -e "Bot Signatures:" echo -e " Current Version: $bot_old" echo -e " New Version: $bot_new" echo -e " Status: $bot_status_colored" } > "$WORKDIR/version_report.ansi" sed 's/\x1B\[[0-9;]*[mK]//g' "$WORKDIR/version_report.ansi" > "$WORKDIR/version_report.txt" step_log "Calling log_versions_syslog" log_versions_syslog "$attack_old" "$attack_new" "$attack_status" "$attack_class" \ "$bot_old" "$bot_new" "$bot_status" "$bot_class" \ "$threat_old" "$threat_new" "$threat_status" "$threat_class" step_log "compare_versions finished" } # ===== SYSLOG VERSION LOGGING and HTML REPORT GEN ===== log_versions_syslog() { # Args: # 1-attack_old 2-attack_new 3-attack_status 4-attack_class # 5-bot_old 6-bot_new 7-bot_status 8-bot_class # 9-threat_old 10-threat_new 11-threat_status 12-threat_class local msg msg="AttackSig (current: $1, latest: $2), BotSig (current: $5, latest: $6), ThreatCamp (current: $9, latest: $10)" /usr/bin/logger -t waf_policy_auto_compile "$msg" # Also print to terminal if VERBOSE is enabled if [ "$VERBOSE" -eq 1 ]; then echo "$msg" fi # Always (re)generate HTML for the mail at this point generate_html_report "$@" } # ===== RESPONSE ACTIONS ===== compile_all_policies() { log "Change detected ā compiling all policies..." if [ "$VERBOSE" -eq 1 ]; then "$WORKDIR/compile_waf_policies.sh" else "$WORKDIR/compile_waf_policies.sh" > /dev/null 2>&1 fi } reload_nginx() { log "Reloading NGINX..." eval "$NGINX_RELOAD_CMD" } rotate_bundles() { log "Archiving new test bundle as old..." mv "$NEW_BUNDLE" "$OLD_BUNDLE" rm -f "$NEW_META" } send_report_email() { local html_report="$1" mail -s "$EMAIL_SUBJECT" -a "Content-Type: text/html" "$EMAIL_RECIPIENT" < "$html_report" } # ===== MAIN LOGIC ===== main() { build_compiler compile_test_policy check_old_bundle get_versions compare_versions if [[ "$VERBOSE" -eq 1 ]]; then cat "$WORKDIR/version_report.ansi" fi if grep -q "Updated" "$WORKDIR/status_flags.txt"; then if [[ "$VERBOSE" -eq 1 ]]; then echo "Detected updates. Recompiling policies, reloading NGINX, sending report." fi compile_all_policies reload_nginx rotate_bundles send_report_email "$HTML_REPORT" else log "No changes detected ā nothing to do." fi log "Done." } main "$@" And should be it.175Views2likes4CommentsNGINX App Protect v5 Signature Notifications
When working with NAP (NGINX App Protect) you don't have an easy way of knowing when any of the signatures are updated. As an old BigIP guy I find that rather strange. Here you have build-in automatic updates and notifications. Unfortunately there isn't any API's you can probe which would have been the best way of doing it. Hopefully it will come one day. However, "friction" and "hard" will not keep me from finding a solution š I have previously made a solution for NAPv4 and I have tried mentally to get me going on a NAPv5 version. The reason for the delay is in the different way NAPv4 and NAPv5 are designed. Where NAPv4 is one module loaded in NGINX, NAPv5 is completely detached from NGINX (well almost, you still need to load a small module to get the traffic from NGINX to NAP) and only works with containers. NAPv5 has moved the signature "storage" from the actual host it is running on (e.g. an installed package) to the policy. This has the consequence that finding a valid "source of truth", for the latest signature versions, is not as simple as building a new image and see which versions got installed. There are very good reasons for this design that I will come back to later. When you fire up NAPv5 you got three containers for the data plane (NGINX, waf-enforcer and waf-config-mgr) and one for the "control plane" (waf-compiler). For this solution the "control plane" is the useful one. It isn't really a control plane but it gives a nice picture of how it is detached from the actual processing of traffic. When you update your signatures you are actually doing it through the waf-compiler. The waf-compiler is a container hosting the actual signature databases and every time a new verison is released you need to rebuild this container and compile your policies into a new version and reload NGINX. And this is what I take advantage of when I look for signature updates. It has the upside that you only need the waf-compiler to get the information you need. My solution will take care of the entire process and make sure that you are always running with the latest signatures. Back to the reason why the split of functions is a very good thing. When you build a new version of the NGINX image and deploy it into production, NAP needs to compile the policies as they load. During the compilation NGINX is not moving any traffic! This becomes a annoying problem even when you have a low number of policies. I have installations where it takes 5 to 10 minutes from deployment of the new image until it starts moving traffic. That is a crazy long time when you are used to working with micro-services and expect everything to flip within seconds. If you have your NAPv4 hooked up to a NGINX Instance Manager (NIM) the problem is somewhat mitigated as NIM will compile the policies before sending them to the gateways. NIM is not a nimble piece of software so it doesn't always fit into the environment. And now here is my hack to the notification problem: The solution consist of two bash scripts and one html template. The template is used when sending a notification mail. I wanted it to be pretty and that was easiest with html. Strictly speaking you could do with just a simple text based mail. Save all three in the same directory. The main script is called "waf_policy_auto_compile.sh"and is the one you put into crontab. The main script will build a new waf-compiler image and compile a test policy. The outcome of that is information about what versions are the newest. It will then extract versions from an old policy and simply see if any of the versions differ. For this to work you need to have an uncompiled policy (you can just use the default one) and a compiled version of it ready beforehand. When a diff has been identified the notification logic is executed and a second script is called: "compile_waf_policies.sh". It basically just trawls through the directory of you policies and logging profiles and compiles a new version of them all. It is not necessary to recompile the logging profiles, so this will probably change in the next version. As the compilation completes the main script will nudge NGINX to reload thus implement all the new versions. You can run "waf_policy_auto_compile.sh" with a verbose flag (-v) and a debug flag (-d). The verbose flag is intended to be used when you run it on a terminal and want the information displayed there. Debug is, well, for debug š The construction of the scripts are based on my own needs but they should be easy to adjust for any need. I will be happy for any feedback, so please don't hold back š45Views0likes0CommentsGitOps: Declarative Infrastructure and Application Delivery with NGINX App Protect
First thing first. What is GitOps? In a nutshell, GitOps is a practice (Git Operation) that allows you to use GIT and code repository as your configuration source of truth (Declarative Infrastructure as Code and Application Delivery as Code) couple with various supporting tools. The state of your git repository syncs with your infrastructure and application states. As operation team runs daily operations (CRUD - "Create, Read, Update and Delete") leveraging the goodness and philosophy of DevOps, they no longer required to store configuration manifest onto various configuration systems. THe Git repo will be the source of truth. Typically, the target systems or infrastructures runs on Kubernetes base platform. For further details and better explanation of GitOps, please refer to below or Google search. https://codefresh.io/learn/gitops/ https://www.atlassian.com/git/tutorials/gitops Why practice GitOps? I have been managing my lab environment for many years. I use my lab for research of technologies, customer demos/Proof-of-Concepts, applications testing, and code development. Due to the nature of constant changes to my environment (agile and dynamic nature), especially with my multiple versions of Kubernetes platform, I have been spending too much time updating, changing, building, deploying and testing various cloud native apps. Commands like docker build, kubectl, istioctl and git have been constantly and repetitively used to operate environments. Hence, I practice GitOps for my Kubernetes infrastructure. Of course, task/operation can be automated and orchestrated with tools such as Ansible, Terraform, Chef and Puppet. You may not necessarily need GitOps to achieve similar outcome. I managed with GitOps practice partly to learn the new "language" and to experience first-hand the full benefit of GitOps. Here are some of my learnings and operations experience that I have been using to manage F5's NGINX App Protect and many demo apps protected by it, which may benefit you and give you some insight on how you can run your own GitOps. You may leverage your own GitOps workflow from here. For details and description on F5's NGINX App Protect, please refer to https://www.nginx.com/products/nginx-app-protect/ Key architecture decision of my GitOps Workflow. Modular architecture - allows me to swap in/out technologies without rework. "Lego block" Must reduce my operational works - saves time, no repetitive task, write once and deploy many. Centralize all my configuration manifest - single source of truth. Currently, my configuration exists everywhere - jump hosts, local laptop, cloud storage and etc. I had lost track of which configuration was the latest. Must be simple, modern, easy to understand and as native as possible. Use Case and desirable outcome Build and keep up to date NGINX Plus Ingress Controller with NGINX App Protect in my Kubernetes environment. Build and keep up to date NGINX App Protect's attack signature and Threat Champaign signature. Zero downtime/impact to apps protected by NGINX App Protect with frequent releases, update and patch cycle for NGINX App Protect. My Problem Statement I need to ensure that my infrastructure (Kubernetes Ingress controller) and web application firewall (NGINX App Protect) is kept up to date with ease. For example, when there are new NGINX-ingress and NGINX App Protect updates (e.g., new version, attack signature and threat campaign signature), I would like to seamlessly push changes out to NGINX-ingress and NGINX App Protect (as it protects my backend apps) without impacting applications protected by NGINX App Protect. GitOps Workflow Start small, start with clear workflow. Below is a depiction of the overall GitOps workflow. NGINX App Protect is the target application. Hence, before description of the full GitOps Workflow, let us understand deployment options for NGINX App Protect. NGINX App Protect Deployment model There are four deployment models for NGINX App Protect. A common deployment models are: Edge - external load balancer and proxies (Global enforcement) Dynamic module inside Ingress Controller (per service/URI/ingress resource enforcement) Per-Service Proxy model - Kubernetes service tier (per service enforcement) Per-pod Proxy model - proxy embedded in pod (per endpoint enforcement) Pipeline demonstrated in this article will work with either NGINX App Protect deployed as Ingress Controller (2) or per-service proxy model (3). For the purposes of this article, NGINX App Protect is deployed at the Ingress controller at the entry point to Kubernetes (Kubernetes Edge Proxy). For those who prefer video, Video Demonstration Part 1 /3 ā GitOps with NGINX Plus Ingress and NGINX App Protect - Overview Part 2 /3 ā GitOps with NGINX Plus Ingress and NGINX App Protect ā Demo in Action Part 3/3 - GitOps with NGINX Plus Ingress and NGINX App Protect - WAF Security Policy Management. Description of GitOps workflow Operation (myself) updates nginx-ingress + NAP image repo (e.g. .gitlab-ci.yml in nginx-plus-ingress) via VSCODE and perform code merge and commit changes to repo stored in Gitlab. Gitlab CI/CD pipeline triggered. Build, test and deploy job started. Git clone kubernetes-ingress repo from https://github.com/nginxinc/kubernetes-ingress/. Checkout latest kubernetes-ingress version and build new image with DockerfilewithAppProtectForPlus dockerfile. [ Ensure you have appropriate nginx app protect license in place ] As part of the build process, it triggers trivy container security scanning for vulnerabilities (Open Source version of AquaSec). Upon completion of static binary scanning, pipeline upload scanned report back to repo for continuous security improvement. Pipeline pushes image to private repository. Private image repo has been configured to perform nightly container security scan (Clair Scanner). Leverage multiple scanning tools - check and balance. Pipeline clone nginx-ingress deployment repo (my-kubernetes-apps) and update nginx-ingress deployment manifest with the latest build image tag (refer excerpt of the manifest below). Gitlab triggers a webhook to ArgoCD to refresh/sync the desire application state on ArgoCD with deployment state in Kubernetes. By default, ArgoCD will sync with Kubernetes every 3 mins. Webhook will trigger instance sync. ArgoCD (deployed on independent K3S cluster) fetches new code from the repo and detects code changes. ArgoCD automates the deployment of the desired application states in the specified target environment. It tracks updates to git branches, tags or pinned to a specific version of manifest at a git commit. Kubernetes triggers an image pull from private repo, performs a rolling updates, and ensures zero interruption to existing traffic. New pods (nginx-ingress) will spin up and traffic will move to new pods before terminating the old pod. Depending on environment and organisation maturity, a successful build, test and deployment onto DEV environment can be pushed to production environment. Note: DAST Scanning (ZAP Scanner) is not shown in this demo. Currently, running offline non-automated scanning. ArgoCD and Gitlab are integrated with Slack notifications. Events are reported into Slack channel via webhook. NGINX App Protect events are send to ELK stack for visibility and analytics. Snippet on where Gitlab CI update nginx-plus-ingress deployment manifest (Flow#6). Each new image build will be tagged with <branch>-hash-<version> ... spec: imagePullSecrets: - name: regcred serviceAccountName: nginx-ingress containers: - image: reg.foobz.com.au/apps/nginx-plus-ingress:master-f660306d-1.9.1 imagePullPolicy: IfNotPresent name: nginx-plus-ingress ... Gitlab CI/CD Pipeline Successful run of CI/CD pipeline to build, test, scan and push container image to private repository and execute code commit onto nginx-plus-ingress repo. Note: Trivy scanning report will be uploaded or committed back to the same repo. To prevent Gitlab CI triggering another build process ("pipeline loop"), the code commit is tagged with [skip ci]. ArgoCD continuous deployment ArgoCD constantly (default every 3 mins) syncs desired application state with my Kubernetes cluster. Its ensures configuration manifest stored in Git repository is always synchronised with the target environment. Mytrain-dev apps are protected by nginx-ingress + NGINX App Protect. Specific (per service/URI enforcement). NGINX App Protect policy is applied onto this service. nginx-ingress + NGINX App Protect is deployed as an Ingress Controller in Kubernetes. pod-template-hash=xxxx is labeled and tracked by ArgoCD. $ kubectl -n nginx-ingress get pod --show-labels NAME READY STATUS RESTARTS AGE LABELS nginx-ingress-776b64dc89-pdtv7 1/1 Running 0 8h app=nginx-ingress,pod-template-hash=776b64dc89 nginx-ingress-776b64dc89-rwk8w 1/1 Running 0 8h app=nginx-ingress,pod-template-hash=776b64dc89 Please refer to the attached video links above for full demo in actions. References Tools involved NGINX Plus Ingress Controller - https://www.nginx.com/products/nginx-ingress-controller/ NGINX App Protect - https://www.nginx.com/products/nginx-app-protect/ Gitlab - https://gitlab.com Trivy Scanner - https://github.com/aquasecurity/trivy ArgoCD - https://argoproj.github.io/argo-cd/ Harbor Private Repository - https://goharbor.io/ Clair Scanner - https://github.com/quay/clair Slack - https://slack.com DAST Scanner - https://www.zaproxy.org/ Elasticsearch, Logstash and Kibana (ELK) - https://www.elastic.co/what-is/elk-stack, https://github.com/464d41/f5-waf-elk-dashboards K3S - https://k3s.io/ Source repo used for this demonstration Repo for building nginx-ingress + NGINX App Protect image repo https://github.com/fbchan/nginx-plus-ingress.git Repo use for deployment manifest of nginx-ingress controller with the NGINX App Protect policy. https://github.com/fbchan/my-kubernetes-apps.git Summary GitOps perhaps is a new buzzword. It may or may not make sense in your environment. It definitely makes sense for me. It integrated well with NGINX App Protect and allows me to constantly update and push new code changes into my environment with ease. A few months down the road, when I need to update nginx-ingress and NGINX App Protect, I just need to trigger a CI job, and then everything works like magic. Your mileage may vary. Experience leads me to think along the line of - start small, start simple by "GitOps-ing" on one of your apps that may require frequency changes. Learn, revise and continuously improve from there. The outcome that GitOps provides will ease your operational burden with "do more with less". Ease of integration of nginx-ingress and NGINX App Protect into your declarative infrastructure and application delivery with GitOps and F5's industry leading Web Application firewall protection will definitely alleviate your organisation's risk exposure to external and internal applications threat.2.2KViews1like3Commentshow to get client-side debug output from Network Access Plugin?
I've been using the F5NAP as a client for ~2 years, after getting it setup on 64-bit linux, to run SSH sessions on a research compute cluster. However now I must make the F5VPN run through a jumpbox, which is not currently working: I can login to the remote access site from the F5NAPed firefox, and start the F5VPN, at which point I immediately lose all DNS. I'm guessing The F5VPN is trying to push to my client a reference to a DNS server inside the firewall. I know from past experience that important hostnames (of, e.g., cluster login nodes) are only visible from the LAN or VPN. This failure is whacking DNS on my client, because I observe the following repeatable sequence: 1. Start F5NAPed firefox on client (laptop, which remains 64-bit linux). Test nslookup www.google.com from a console/terminal: succeeds. Login to remote-access site with F5NAPed firefox. Test nslookup www.google.com : succeeds. Use remote-access site's web UI to start F5VPN. Test nslookup www.google.com : fails with ;; connection timed out; no servers could be reached Use remote-access site's web UI to exit F5VPN (but leaving F5NAPed firefox up and logged-in to remote-access site). Test nslookup www.google.com : succeeds. The DNS push from the F5VPN is failing due to a routing problem, since the F5VPN worked before the imposition of the jumpbox tunnel. However I see no way to debug this, since the F5VPN is implemented with a browser plugin. Is there some way to get status/debug output (e.g., stdout, stderr messages) from the F5NAP on linux, the way one could if running a console-based solution? E.g., Can one make the F5NAP log to a file? Can one make the F5NAP log to the console from which one runs the F5NAPed firefox? Is there a recommended tool for observing relevant messages or other information from within firefox-3.x?487Views0likes2Comments