devops
23911 TopicsResolving DNS, and dynamically selecting pool
The problem: Some LAN hosts are not permitted outbound access to the internet through the firewall, and yet, they need access to github.com. Unfortunately, github's published CIDR ranges are enormous (hundreds of CIDR ranges), and dynamic, so we can't just modify firewall to allow outbound access to a simple set of CIDR ranges. Also, github.com is extremely dynamic. If you resolve over and over, it comes back with a new set of IP addresses every few seconds. So our firewall, which supports DNS-based rules, is not able to support DNS-based rules for github.com. It's just simply too volatile. The proposed workaround: Host a virtual server as a reverse proxy on a private IP address on the F5, which will use an iRule to query github.com, and TCP pass-thru traffic to whatever external IP address is returned. Local clients would have the F5 IP address hard-coded into /etc/hosts so all traffic for github.com will go to this local F5 IP address, and the F5 should pass-thru to an appropriate external IP for github.com. The DNS query is easy enough in an iRule. The problem is pool selection. I assume I can't have an iRule dynamically create or modify a pool, right? I should be able to create a pool with a hard-coded set of IP addresses in it, but then it won't be dynamic at all, and we'll be prone to failure whenever github decides to change their IP addresses. Any good ideas for possible solutions? Thanks8Views0likes2CommentsCan BIG-IP DNS recursion only my domain?
Hi We are using F5 DNS as DNS server and have many CNAME record. We want to query those CNAME record and then get IP as a result too. (Which solved by Enable "recursion yes; in named configuration) But we found problem that our F5 DNS perform recursion on EVERY domain client asking. (eg. f5.com, nginx.com., etc.) We want F5 DNS to answer query on only domain we handle (many domain in zonerunner and gslb) How can we do that? Is it possible to do that? because "recursion yes;" is config on named configuration. I think it's global configuration. and "allow-recursion {}" is only check for client IP address (it's not check on domain we handle) Thank you21Views0likes2CommentsiControl REST Cookbook - Virtual Server (ltm virtual)
This cookbook lists selected ready-to-use iControl REST curl commands for virtual-server related resources. Each recipe consists of the curl command, it's tmsh equivalent, and sample output. In this cookbook, the following curl options are used. Option Meaning ______________________________________________________________________________________ -s Suppress progress meter. Handy when you want to pipe the output. ______________________________________________________________________________________ -k Allows "insecure" SSL connections. ______________________________________________________________________________________ -u Specify user ID and password. For the start, you should use the "admin" account that you normally use to access the Configuration Utility. When you specify the password at the same time, concatenate with ":". e.g., admin:admin. ______________________________________________________________________________________ -X <method> Specify the HTTP method. When omitted, the default is GET. In the REST framework, POST means create (tmsh create), PATCH means overwriting the existing resource with the data sent (tmsh modify), and PATCH is for merging (ditto). ______________________________________________________________________________________ -H <Header> Specify the request header. When you send (POST, PATCH, PUT) data, you need to tell the server that the data is in JSON format. i.e., -H "Content-Type: application/json. ______________________________________________________________________________________ -d 'data' The JSON data to send. Note that you need to quote the entire json blob, and each "name":"value" pairs must be quoted. When you have nested quotes, make sure you escape (\) them. Get information of the virtual <vs> tmsh list ltm <vs> curl -sku admin:admin https://<host>/mgmt/tm/ltm/virtual/<vs> Sample Output { kind: 'tm:ltm:virtual:virtualstate', name: 'vs', fullPath: 'vs', generation: 1109, selfLink: 'https://localhost/mgmt/tm/ltm/virtual/vs?ver=12.1.0', addressStatus: 'yes', autoLasthop: 'default', cmpEnabled: 'yes', connectionLimit: 0, description: 'TestData', destination: '/Common/192.168.184.226:80', enabled: true, gtmScore: 0, ipProtocol: 'tcp', mask: '255.255.255.255', mirror: 'disabled', mobileAppTunnel: 'disabled', nat64: 'disabled', pool: '/Common/vs-pool', poolReference: { link: 'https://localhost/mgmt/tm/ltm/pool/~Common~vs-pool?ver=12.1.0' }, rateLimit: 'disabled', rateLimitDstMask: 0, rateLimitMode: 'object', rateLimitSrcMask: 0, serviceDownImmediateAction: 'none', source: '0.0.0.0/0', sourceAddressTranslation: { type: 'automap' }, sourcePort: 'preserve', synCookieStatus: 'not-activated', translateAddress: 'enabled', translatePort: 'enabled', vlansDisabled: true, vsIndex: 4, rules: [ '/Common/irule' ], rulesReference: [ { link: 'https://localhost/mgmt/tm/ltm/rule/~Common~iRuleTest?ver=12.1.0' } ], policiesReference: { link: 'https://localhost/mgmt/tm/ltm/virtual/~Common~vs/policies?ver=12.1.0', isSubcollection: true }, profilesReference: { link: 'https://localhost/mgmt/tm/ltm/virtual/~Common~vs/profiles?ver=12.1.0', isSubcollection: true } } Get only specfic field of the virtual <vs> The naming convension for the parameters is slightly different from the ones on tmsh, so look for the familiar names in the GET response above. The example below queris the Default Pool (pool). tmsh list ltm <vs> pool curl -sku admin:admin https://<host>/mgmt/tm/ltm/virtual/<vs>?options=pool Sample Output { kind: 'tm:ltm:virtual:virtualstate', name: 'vs', fullPath: 'vs', generation: 1, selfLink: 'https://localhost/mgmt/tm/ltm/virtual/vs?options=pool&ver=12.1.1', pool: '/Common/vs-pool', poolReference: { link: 'https://localhost/mgmt/tm/ltm/pool/~Common~vs-pool?ver=12.1.1' } } Get all the information of the virtual <vs> Unlike the tmsh equivalent, iControl REST GET does not return the configuration information of the attached policies and profiles. To see them, use expandSubcollections tmsh list ltm <vs> curl -sku admin:admin https://<host>/mgmt/tm/ltm/virtual/<vs>?expandSubcollections=true Sample Output { "addressStatus": "yes", "autoLasthop": "default", "cmpEnabled": "yes", "connectionLimit": 0, "destination": "/Common/192.168.184.240:80", "enabled": true, "fullPath": "vs", "generation": 291, "gtmScore": 0, "ipProtocol": "tcp", "kind": "tm:ltm:virtual:virtualstate", "mask": "255.255.255.255", "mirror": "disabled", "mobileAppTunnel": "disabled", "name": "vs", "nat64": "disabled", "policiesReference": { "isSubcollection": true, "link": "https://localhost/mgmt/tm/ltm/virtual/~Common~vs/policies?ver=13.1.0" }, "pool": "/Common/CentOS-all80", "poolReference": { "link": "https://localhost/mgmt/tm/ltm/pool/~Common~CentOS-all80?ver=13.1.0" }, "profilesReference": { "isSubcollection": true, "items": [ { "context": "all", "fullPath": "/Common/http", "generation": 291, "kind": "tm:ltm:virtual:profiles:profilesstate", "name": "http", "nameReference": { "link": "https://localhost/mgmt/tm/ltm/profile/http/~Common~http?ver=13.1.0" }, "partition": "Common", "selfLink": "https://localhost/mgmt/tm/ltm/virtual/~Common~vs/profiles/~Common~http?ver=13.1.0" }, { "context": "all", "fullPath": "/Common/tcp", "generation": 287, "kind": "tm:ltm:virtual:profiles:profilesstate", "name": "tcp", "nameReference": { "link": "https://localhost/mgmt/tm/ltm/profile/tcp/~Common~tcp?ver=13.1.0" }, "partition": "Common", "selfLink": "https://localhost/mgmt/tm/ltm/virtual/~Common~vs/profiles/~Common~tcp?ver=13.1.0" } ], "link": "https://localhost/mgmt/tm/ltm/virtual/~Common~vs/profiles?ver=13.1.0" }, "rateLimit": "disabled", "rateLimitDstMask": 0, "rateLimitMode": "object", "rateLimitSrcMask": 0, "selfLink": "https://localhost/mgmt/tm/ltm/virtual/vs?expandSubcollections=true&ver=13.1.0", "serviceDownImmediateAction": "none", "source": "0.0.0.0/0", "sourceAddressTranslation": { "type": "automap" }, "sourcePort": "preserve", "synCookieStatus": "not-activated", "translateAddress": "enabled", "translatePort": "enabled", "vlansDisabled": true, "vsIndex": 2 } Get stats of the virtual <vs> tmsh show ltm <vs> curl -sku admin:admin https://<host>/mgmt/tm/ltm/virtual/<vs>/stats Sample Output { kind: 'tm:ltm:virtual:virtualstats', generation: 1109, selfLink: 'https://localhost/mgmt/tm/ltm/virtual/vs/stats?ver=12.1.0', entries: { 'https://localhost/mgmt/tm/ltm/virtual/vs/~Common~vs/stats': { nestedStats: { kind: 'tm:ltm:virtual:virtualstats', selfLink: 'https://localhost/mgmt/tm/ltm/virtual/vs/~Common~vs/stats?ver=12.1.0', entries: { 'clientside.bitsIn': { value: 12880 }, 'clientside.bitsOut': { value: 34592 }, 'clientside.curConns': { value: 0 }, 'clientside.evictedConns': { value: 0 }, 'clientside.maxConns': { value: 2 }, 'clientside.pktsIn': { value: 26 }, 'clientside.pktsOut': { value: 26 }, 'clientside.slowKilled': { value: 0 }, 'clientside.totConns': { value: 6 }, cmpEnableMode: { description: 'all-cpus' }, cmpEnabled: { description: 'enabled' }, csMaxConnDur: { value: 37 }, csMeanConnDur: { value: 29 }, csMinConnDur: { value: 17 }, destination: { description: '192.168.184.226:80' }, 'ephemeral.bitsIn': { value: 0 }, 'ephemeral.bitsOut': { value: 0 }, 'ephemeral.curConns': { value: 0 }, 'ephemeral.evictedConns': { value: 0 }, 'ephemeral.maxConns': { value: 0 }, 'ephemeral.pktsIn': { value: 0 }, 'ephemeral.pktsOut': { value: 0 }, 'ephemeral.slowKilled': { value: 0 }, 'ephemeral.totConns': { value: 0 }, fiveMinAvgUsageRatio: { value: 0 }, fiveSecAvgUsageRatio: { value: 0 }, tmName: { description: '/Common/vs' }, oneMinAvgUsageRatio: { value: 0 }, 'status.availabilityState': { description: 'available' }, 'status.enabledState': { description: 'enabled' }, 'status.statusReason': { description: 'The virtual server is available' }, syncookieStatus: { description: 'not-activated' }, 'syncookie.accepts': { value: 0 }, 'syncookie.hwAccepts': { value: 0 }, 'syncookie.hwSyncookies': { value: 0 }, 'syncookie.hwsyncookieInstance': { value: 0 }, 'syncookie.rejects': { value: 0 }, 'syncookie.swsyncookieInstance': { value: 0 }, 'syncookie.syncacheCurr': { value: 0 }, 'syncookie.syncacheOver': { value: 0 }, 'syncookie.syncookies': { value: 0 }, totRequests: { value: 4 } } } } } } Change one of the configuration options of the virtual <vs> The command below changes the Description field of the virtual ("description" in tmsh and iControl REST). tmsh modify ltm virtual <vs> description "Hello World!" curl -sku admin:admin https://<host>/mgmt/tm/ltm/virtual/<vs> \ -X PATCH -H "Content-Type: application/json" \ -d '{"description": "Hello World!"}' Sample Output { kind: 'tm:ltm:virtual:virtualstate', name: 'vs', ... description: 'Hello World!', <==== Changed. ... } Disable the virtual <vs> The command syntax is same as above: To change the state of a virtual from "enabled" to "disabled", send "disabled":true. For enabling the virtual, use "enabled":true. Note that the Boolean type true/false does not require quotations. tmsh modify ltm virtual <vs> disabled curl -sku admin:admin https://<host>/mgmt/tm/ltm/virtual/<vs> \ -X PATCH -H "Content-Type: application/json" \ -d '{"disabled": true}' \ Sample Output { kind: 'tm:ltm:virtual:virtualstate', name: 'vs', fullPath: 'vs', ... disabled: true, <== Changed ... } Add another iRule to <vs> When the virtual has iRules already attached, you need to send the existing ones too along with the additional one. For example, to add /Common/testRule1 to the virtual with /Common/testRule1, specify both in an array (square brackets). Note that the /Common/testRule2 iRule object should be already created. tmsh modify ltm virtual <vs> rules {testRule1 testRule2} curl -sku admin:admin https://<host>/mgmt/tm/ltm/virtual/<vs> \ -X PATCH -H "Content-Type: application/json" \ -d '{"rules": ["/Common/testRule1", "/Common/testRule2"] }' Sample Output { kind: 'tm:ltm:virtual:virtualstate', name: 'vs', fullPath: 'vs', ... rules: [ '/Common/test1', '/Common/test2' ], <== Changed rulesReference: [ { link: 'https://localhost/mgmt/tm/ltm/rule/~Common~test1?ver=12.1.1' }, { link: 'https://localhost/mgmt/tm/ltm/rule/~Common~test2?ver=12.1.1' } ], ... } Create a new virtual <vs> You can create a skeleton virtual by specifying only Destination Address and Mask. The remaining parameters such as profiles are set to default. You can later modify the parameters by PATCH-ing. tmsh create ltm virtual <vs> destination <ip:port> mask <ip> curl -sku admin:admin -X POST -H "Content-Type: application/json" \ -d '{"name": "vs", "destination":"192.168.184.230:80", "mask":"255.255.255.255"}' \ https://<host>/mgmt/tm/ltm/virtual Sample Output { kind: 'tm:ltm:virtual:virtualstate', name: 'vs', partition: 'Common', fullPath: '/Common/vs', ... destination: '/Common/192.168.184.230:80', <== Created ... mask: '255.255.255.255', <== Created ... } Create a new virtual <vs> with a lot of parameters You can specify all the essential parameters upon creation. This example creates a new virtual with pool, default persistence profile, profiles, iRule, and source address translation. The call fails if any of the parameters conflicts. For example, you cannot specify "Cookie Persistence" without specifying appropriate profiles. If you do not specify any profile, it falls back to the default fastL4 , which is not compatible with Cookie Persistence. tmsh create ltm virtual <vs> destination <ip:port> mask <ip> pool <pool> persist replace-all-with { cookie } profiles add { tcp http clientssl } rules { <rule> } source-address-translation { type automap } curl -sku admin:admin https://<host>/mgmt/tm/ltm/virtual -H "Content-Type: application/json" -X POST -d '{"name": "vs", \ "destination": "10.10.10.10:10", \ "mask": "255.255.255.255", \ "pool": "CentOS-all80", \ "persist": [ {"name": "cookie"} ], \ "profilesReference": {"items": [ {"context": "all", "name": "http"}, {"context": "all", "name": "tcp"}, {"context": "clientside", "name": "clientssl"}] }, \ "rules": [ "ShowVersion" ], \ "sourceAddressTranslation": {"type": "automap"} }' Sample Output { "addressStatus": "yes", "autoLasthop": "default", "cmpEnabled": "yes", "connectionLimit": 0, "destination": "/Common/10.10.10.10:10", "enabled": true, "fullPath": "/Common/test", "generation": 592, "gtmScore": 0, "ipProtocol": "tcp", "kind": "tm:ltm:virtual:virtualstate", "mask": "255.255.255.255", "mirror": "disabled", "mobileAppTunnel": "disabled", "name": "vs", "nat64": "disabled", "partition": "Common", "persist": [ { "name": "cookie", "nameReference": { "link": "https://localhost/mgmt/tm/ltm/persistence/cookie/~Common~cookie?ver=13.1.0" }, "partition": "Common", "tmDefault": "yes" } ], "policiesReference": { "isSubcollection": true, "link": "https://localhost/mgmt/tm/ltm/virtual/~Common~test/policies?ver=13.1.0" }, "pool": "/Common/CentOS-all80", "poolReference": { "link": "https://localhost/mgmt/tm/ltm/pool/~Common~CentOS-all80?ver=13.1.0" }, "profilesReference": { "isSubcollection": true, "link": "https://localhost/mgmt/tm/ltm/virtual/~Common~test/profiles?ver=13.1.0" }, "rateLimit": "disabled", "rateLimitDstMask": 0, "rateLimitMode": "object", "rateLimitSrcMask": 0, "rules": [ "/Common/ShowVersion" ], "rulesReference": [ { "link": "https://localhost/mgmt/tm/ltm/rule/~Common~ShowVersion?ver=13.1.0" } ], "selfLink": "https://localhost/mgmt/tm/ltm/virtual/~Common~test?ver=13.1.0", "serviceDownImmediateAction": "none", "source": "0.0.0.0/0", "sourceAddressTranslation": { "type": "automap" }, "sourcePort": "preserve", "synCookieStatus": "not-activated", "translateAddress": "enabled", "translatePort": "enabled", "vlansDisabled": true, "vsIndex": 52 } Delete a virtual <vs> tmsh delete ltm virtual <vs> curl -sku admin:admin https://192.168.226.55/mgmt/tm/ltm/virtual/<vs> -X DELETE Sample Output No output (just 200 OK and no response body) References curl.1 the man page curl Releases and Downloads ... including the port for Windows Jason Rahm's "Demystifying iControl REST" series(DevCentral) -- This is Part I of 7 at the time of this article. iControl REST API reference (DevCentral) iControl® REST API User Guide (DevCentral) -- Link is for 12.1. Search for the older versions.17KViews3likes13CommentsWhat is the best log Log Analysis Tool for F5 AFM/APM?
At the moment we use Graylog as a Log Analysis Tool. But we are not happy with it. Very difficult to install and to maintain when you are not a linux freak. After updating our Linux System Graylog isn't working anymore. Best solution would be an appliance. any advice?Solved1.6KViews0likes3CommentsRedirect https to https virtual server Certificate question
Hi, i have to redirect a https request to a https virtual server , i have in mind to use an irule as follows: when HTTP_REQUEST { set url [HTTP::uri] if {[regexp {"STRING"} $url]} { virtual /Common/MyVirtual } } To do so , i have to set the HTTP profile (client) to http to be able to assing the corresponding Irule to the VS, but requests doesnt work as i have to select the SSL Profile , here the problem. i created a new SSL client profile and tried to set the Certificate Key chain, but doesnt work ( i think i did it wrong) The source https request is using a certificate, that i can see already stored at the F5 , inside file ca-bundle.crt , also from the source server i was able to get the certificate and tried to create a new certificate , but doesnt work , i think i'm missing the key or something. When creating the certificate it's mandatory to generate it as Certificate Authority? or it can be self? Note: i'm not very good at certificates with F5 , i know how to create irules, manage the F5 and so on .. but i'm lost with the certificates part. Thanks in advance.47Views0likes4CommentsIntroducing F5 BIG-IP Next CNF Solutions for Red Hat OpenShift
5G and Red Hat OpenShift 5G standards have embraced Cloud-Native Network Functions (CNFs) for implementing network services in software as containers. This is a big change from previous Virtual Network Functions (VNFs) or Physical Network Functions (PNFs). The main characteristics of Cloud-Native Functions are: Implementation as containerized microservices Small performance footprint, with the ability to scale horizontally Independence of guest operating system,since CNFs operate as containers Lifecycle manageable by Kubernetes Overall, these provide a huge improvement in terms of flexibility, faster service delivery, resiliency, and crucially using Kubernetes as unified orchestration layer. The later is a drastic change from previous standards where each vendor had its own orchestration. This unification around Kubernetes greatly simplifies network functions for operators, reducing cost of deploying and maintaining networks. Additionally, by embracing the container form factor, allows Network Functions (NFs) to be deployed in new use cases like far edge. This is thanks to the smaller footprint while at the same time these can be also deployed at large scale in a central data center because of the horizontal scalability. In this article we focus on Red Hat OpenShift which is the market leading and industry reference implementation of Kubernetes for IT and Telco workloads. Introduction to F5 BIG-IP Next CNF Solutions F5 BIG-IP Next CNF Solutions is a suite of Kubernetes native 5G Network Functions, implemented as microservices. It shares the same Cloud Native Engine (CNE) as F5 BIG-IP Next SPK introduced last year. The functionalities implemented by the CNF Solutions deal mainly with user plane data. User plane data has the particularity that the final destination of the traffic is not the Kubernetes cluster but rather an external end-point, typically the Internet. In other words, the traffic gets in the Kubernetes cluster and it is forwarded out of the cluster again. This is done using dedicated interfaces that are not used for the regular ingress and egress paths of the regular traffic of a Kubernetes cluster. In this case, the main purpose of using Kubernetes is to make use of its orchestration, flexibility, and scalability. The main functionalities implemented at initial GA release of the CNF Solutions are: F5 Next Edge Firewall CNF, an IPv4/IPv6 firewall with the main focus in protecting the 5G core networks from external threads, including DDoS flood protection and IPS DNS protocol inspection. F5 Next CGNAT CNF, which offers large scale NAT with the following features: NAPT, Port Block Allocation, Static NAT, Address Pooling Paired, and Endpoint Independent mapping modes. Inbound NAT and Hairpining. Egress path filtering and address exclusions. ALG support: FTP/FTPS, TFTP, RTSP and PPTP. F5 Next DNS CNF, which offers a transparent DNS resolver and caching services. Other remarkable features are: Zero rating DNS64 which allows IPv6-only clients connect to IPv4-only services via synthetic IPv6 addresses. F5 Next Policy Enforcer CNF, which provides traffic classification, steering and shaping, and TCP and video optimization. This product is launched as Early Access in February 2023 with basic functionalities. Static TCP optimization is now GA in the initial release. Although the CGNAT (Carrier Grade NAT) and the Policy Enforcer functionalities are specific to User Plane use cases, the Edge Firewall and DNS functionalities have additional uses in other places of the network. F5 and OpenShift BIG-IP Next CNF Solutions fully supportsRed Hat OpenShift Container Platform which allows the deployment in edge or core locations with a unified management across the multiple deployments. OpenShift operators greatly facilitates the setup and tuning of telco grade applications. These are: Node Tuning Operator, used to setup Hugepages. CPU Manager and Topology Manager with NUMA awareness which allows to schedule the data plane PODs within a NUMA domain which is aligned with the SR-IOV NICs they are attached to. In an OpenShift platform all these are setup transparently to the applications and BIG-IP Next CNF Solutions uniquely require to be configured with an appropriate runtimeClass. F5 BIG-IP Next CNF Solutions architecture F5 BIG-IP Next CNF Solutions makes use of the widely trusted F5 BIG-IP Traffic Management Microkernel (TMM) data plane. This allows for a high performance, dependable product from the start. The CNF functionalities come from a microservices re-architecture of the broadly used F5 BIG-IP VNFs. The below diagram illustrates how a microservices architecture used. The data plane POD scales vertically from 1 to 16 cores and scales horizontally from 1 to 32 PODs, enabling it to handle millions of subscribers. NUMA nodes are supported. The next diagram focuses on the data plane handling which is the most relevant aspect for this CNF suite: Typically, each data plane POD has two IP address, one for each side of the N6 reference point. These could be named radio and Internet sides as shown in the diagram above. The left-side L3 hop must distribute the traffic amongst the lef-side addresses of the CNF data plane. This left-side L3 hop can be a router with BGP ECMP (Equal Cost Multi Path), an SDN or any other mechanism which is able to: Distribute the subscribers across the data plane PODs, shown in [1] of the figure above. Keep these subscribers in the same PODs when there is a change in the number of active data plane PODs (scale-in, scale-out, maintenance, etc...) as shown in [2] in the figure above. This minimizes service disruption. In the right side of the CNFs, the path towards the Internet, it is typical to implement NAT functionality to transform telco's private addresses to public addresses. This is done with the BIG-IP Next CG-NAT CNF. This NAT makes the return traffic symmetrical by reaching the same POD which processed the outbound traffic. This is thanks to each POD owning part of this NAT space, as shown in [3] of the above figure. Each POD´s NAT address space can be advertised via BGP. When not using NAT in the right side of the CNFs, it is required that the network is able to send the return traffic back to the same POD which is processing the same connection. The traffic must be kept symmetrical at all times, this is typically done with an SDN. Using F5 BIG-IP Next CNF Solutions As expected in a fully integrated Kubernetes solution, both the installation and configuration is done using the Kubernetes APIs. The installation is performed using helm charts, and the configuration using Custom Resource Definitions (CRDs). Unlike using ConfigMaps, using CRDs allow for schema validation of the configurations before these are applied. Details of the CRDs can be found in this clouddocs site. Next it is shown an overview of the most relevant CRDs. General network configuration Deploying in Kubernetes automatically configures and assigns IP addresses to the CNF PODs. The data plane interfaces will require specific configuration. The required steps are: Create Kubernetes NetworkNodePolicies and NetworkAttchment definitions which will allow to expose SR-IOV VFs to the CNF data planes PODs (TMM). To make use of these SR-IOV VFs these are referenced in the BIG-IP controller's Helm chart values file. This is described in theNetworking Overview page. Define the L2 and L3 configuration of the exposed SR-IOV interfaces using the F5BigNetVlan CRD. If static routes need to be configured, these can be added using the F5BigNetStaticroute CRD. If BGP configuration needs to be added, this is configured in the BIG-IP controller's Helm chart values file. This is described in the BGP Overview page. It is expected this will be configured using a CRD in the future. Traffic management listener configuration As with classic BIG-IP, once the CNFs are running and plumbed in the network, no traffic is processed by default. The traffic management functionalities implemented by BIG-IP Next CNF Solutions are the same of the analogous modules in the classic BIG-IP, and the CRDs in BIG-IP Next to configure these functionalities are conceptually similar too. Analogous to Virtual Servers in classic BIG-IP, BIG-IP Next CNF Solutions have a set of CRDs that create listeners of traffic where traffic management policies are applied. This is mainly the F5BigContextSecure CRD which allows to specify traffic selectors indicating VLANs, source, destination prefixes and ports where we want the policies to be applied. There are specific CRDs for listeners of Application Level Gateways (ALGs) and protocol specific solutions. These required several steps in classic BIG-IP: first creating the Virtual Service, then creating the profile and finally applying it to the Virtual Server. In BIG-IP Next this is done in a single CRD. At time of this writing, these CRDs are: F5BigZeroratingPolicy - Part of Zero-Rating DNS solution; enabling subscribers to bypass rate limits. F5BigDnsApp - High-performance DNS resolution, caching, and DNS64 translations. F5BigAlgFtp - File Transfer Protocol (FTP) application layer gateway services. F5BigAlgTftp - Trivial File Transfer Protocol (TFTP) application layer gateway services. F5BigAlgPptp - Point-to-Point Tunnelling Protocol (PPTP) application layer gateway services. F5BigAlgRtsp - Real Time Streaming Protocol (RTSP) application layer gateway services. Traffic management profiles and policies configuration Depending on the type of listener created, these can have attached different types of profiles and policies. In the case of F5BigContextSecure it can get attached thefollowing CRDs to define how traffic is processed: F5BigTcpSetting - TCP options to fine-tune how application traffic is managed. F5BigUdpSetting - UDP options to fine-tune how application traffic is managed. F5BigFastl4Setting - FastL4 option to fine-tune how application traffic is managed. and the following policies for security and NAT: F5BigDdosPolicy - Denial of Service (DoS/DDoS) event detection and mitigation. F5BigFwPolicy - Granular stateful-flow filtering based on access control list (ACL) policies. F5BigIpsPolicy - Intelligent packet inspection protects applications from malignant network traffic. F5BigNatPolicy - Carrier-grade NAT (CG-NAT) using large-scale NAT (LSN) pools. The ALG listeners require the use of F5BigNatPolicy and might make use for the F5BigFwPolicyCRDs.These CRDs have also traffic selectors to allow further control over which traffic these policies should be applied to. Firewall Contexts Firewall policies are applied to the listener with best match. In addition to theF5BigFwPolicy that might be attached, a global firewall policy (hence effective in all listeners) can be configured before the listener specific firewall policy is evaluated. This is done with F5BigContextGlobal CRD, which can have attached a F5BigFwPolicy. F5BigContextGlobal also contains the default action to apply on traffic not matching any firewall rule in any context (e.g. Global Context or Secure Context or another listener). This default action can be set to accept, reject or drop and whether to log this default action. In summary, within a listener match, the firewall contexts are processed in this order: ContextGlobal Matching ContextSecure or another listener context. Default action as defined by ContextGlobal's default action. Event Logging Event logging at high speed is critical to provide visibility of what the CNFs are doing. For this the next CRDs are implemented: F5BigLogProfile - Specifies subscriber connection information sent to remote logging servers. F5BigLogHslpub - Defines remote logging server endpoints for the F5BigLogProfile. Demo F5 BIG-IP Next CNF Solutions roadmap What it is being exposed here is just the begin of a journey. Telcos have embraced Kubernetes as compute and orchestration layer. Because of this, BIG-IP Next CNF Solutions will eventually replace the analogous classic BIG-IP VNFs. Expect in the upcoming months that BIG-IP Next CNF Solutions will match and eventually surpass the features currently being offered by the analogous VNFs. Conclusion This article introduces fully re-architected, scalable solution for Red Hat OpenShift mainly focused on telco's user plane. This new microservices architecture offers flexibility, faster service delivery, resiliency and crucially the use of Kubernetes. Kubernetes is becoming the unified orchestration layer for telcos, simplifying infrastructure lifecycle, and reducing costs. OpenShift represents the best-in-class Kubernetes platform thanks to its enterprise readiness and Telco specific features. The architecture of this solution alongside the use of OpenShift also extends network services use cases to the edge by allowing the deployment of Network Functions in a smaller footprint. Please check the official BIG-IP Next CNF Solutions documentation for more technical details and check www.f5.com for a high level overview.2.1KViews3likes2CommentsRseries SCP OS to appliance from remote server
I'm new to rseries but I need to SCP an OS from a remote server onto the appliance via CLI. Server I am admining from holding OS only allows SCP file transfers out and https is not an option. What is the file path? From a admin linux box to r5600 i tried: "#scp <local F5OS.iso filename> admin@<r5600IPaddress>:/system/images/staging" "#scp <local F5OS.iso filename> admin@<r5600IPaddress>:/images/staging" "#scp <local F5OS.iso filename> admin@<r5600IPaddress>:/system/images/import/iso" "#scp <local F5OS.iso filename> admin@<r5600IPaddress>:/images/import/iso" Each time I get the response "Invalid pathname" https://techdocs.f5.com/en-us/f5os-a-1-5-0/f5-rseries-systems-administration-configuration/title-system-settings.html discusses it some but does not give me all of the information I need (or water it down enough for me). Any help is always apprecriatedSolved830Views0likes5CommentsF5 Whatsapp group move to Telegram
Good day, I hope someone can assist. There was a note out a while back regarding an F5 Whatsapp group. Shortly thereafter a response stated the group was full. The next response stated was going to move to Telegram. Just wanting to know if the group setup utilizing Telegram happened and if so, if someone could advise how to find/join the group. Cheers Paul2.3KViews0likes8CommentsClosing active connections
I have a rseries environment (r5800) running 15.1.6.1 release which does include the APM limited in the licensing. I have a request to terminate/close a connection after 15 minutes regardless of whether or not the connection is active or idle. I am across this article, https://clouddocs.f5.com/api/irules/after.html#:~:text=The%20after%20command%20allows%20you,or%20canceling%20currently%20delayed%20scripts which had the following iRule: when RULE_INIT { #Timeout is in milliseconds set static::response_timeout 10000 } when CLIENT_ACCEPTED { log local0. "Received connection, beginning timer for $static::response_timeout from [clock seconds]" after $static::response_timeout { log local0. "Timeout $static::response_timeout milliseconds elapsed closing connection. [clock seconds]" reject } } I changed to timeout value to 300000 (5 minutes) for testing and applied the iRule to the VS. This did not work as the connection never timed out nor appeared to be rejected. If anyone has any input or ideas that I might try I would appreciate it. Thanks,12Views0likes0Comments