automation
445 TopicsLeveraging BGP and ECMP for F5 Distributed Cloud Customer Edge, Part Two
Introduction This is the second part of our series on leveraging BGP and ECMP for F5 Distributed Cloud Customer Edge deployments. In Part One, we explored the high-level concepts, architecture decisions, and design principles that make BGP and ECMP such a powerful combination for Customer Edge high availability and maintenance operations. This article provides step-by-step implementation guidance, including: High-level and low-level architecture diagrams Complete BGP peering and routing policy configuration in F5 Distributed Cloud Console Practical configuration examples for Fortinet FortiGate and Palo Alto Networks firewalls By the end of this article, you'll have everything you need to implement BGP-based high availability for your Customer Edge deployment. Architecture Overview Before diving into configuration, let’s establish a clear picture of the architecture we’re implementing. We’ll examine this from two perspectives: a high-level logical view and a detailed low-level view showing specific IP addressing and AS numbers. High-Level Architecture The high-level architecture illustrates the fundamental traffic flow and BGP relationships in our deployment: Key Components: Component Role Internet External connectivity to the network Next-Generation Firewall Acts as the BGP peer and performs ECMP distribution to Customer Edge nodes Customer Edge Virtual Site Two or more CE nodes advertising identical VIP prefixes via BGP The architecture follows a straightforward principle: the upstream firewall establishes BGP peering with each CE node. Each CE advertises its VIP addresses as /32 routes. The firewall, seeing multiple equal-cost paths to the same destination, distributes incoming traffic across all available CE nodes using ECMP. Low-Level Architecture with IP Addressing The low-level diagram provides the specific details needed for implementation, including IP addresses and AS numbers: Network Details: Component IP Address Role Firewall (Inside) 10.154.4.119/24 BGP Peer, ECMP Router CE1 (Outside) 10.154.4.160/24 Customer Edge Node 1 CE2 (Outside) 10.154.4.33/24 Customer Edge Node 2 Global VIP 192.168.100.10/32 Load Balancer VIP BGP Configuration: Parameter Firewall Customer Edge AS Number 65001 65002 Router ID 10.154.4.119 Auto-assigned based on interface IP Advertised Prefix None 192.168.100.0/24 le 32 This configuration uses eBGP (External BGP) between the firewall and CE nodes, with different AS numbers for each. The CE nodes share the same AS number (65002), which is the standard approach for multi-node CE deployments advertising the same VIP prefixes. Configuring BGP in F5 Distributed Cloud Console The F5 Distributed Cloud Console provides a centralized interface for configuring BGP peering and routing policies on your Customer Edge nodes. This section walks you through the complete configuration process. Step 1: Configure the BGP peering Go to: Multi-Cloud Network Connect --> Manage --> Networking --> External Connectivity --> BGP Peers & Policies Click on Add BGP Peer Then add the following information: Object name Site where to apply this BGP configuration ASN Router ID Here is an example of the required parameters. Then click on Peers --> Add Item And filled the relevant fields like below by adapting the parameters for your requirements. Step 2: Configure the BGP routing policies Go to: Multi-Cloud Network Connect --> Manage --> Networking --> External Connectivity --> BGP Peers & Policies --> BGP Routing Policies Click on Add BGP Routing Policy Add a name for your BGP routing policy object and click on Configure to add the rules. Click on Add Item to add a rule. Here we are going to allow the /32 prefixes from our VIP subnet (192.168.100.0/24). Save the BGP Routing Policy Repeat the action to create another BGP routing policy with the exact same parameters except the Action Type, which should be of type Deny. Now we have two BGP routing policies: One to allow the VIP prefixes (for normal operations) One to deny the VIP prefixes (for maintenance mode) We still need to a a third and final BGP routing policy, in order to deny any prefixes on the CE. For that, create a third BGP routing policy with this match. Step 3: Apply the BGP routing policies To apply the BGP routing policies in your BGP peer object, edit the Peer and: Enable the BGP routing policy Apply the BGP routing policy objects created before for Inbound and Outbound Fortinet FortiGate Configuration FortiGate firewalls are widely deployed as network security appliances and support robust BGP capabilities. This section provides the minimum configuration for establishing BGP peering with Customer Edge nodes and enabling ECMP load distribution. Step 1: Configure the Router ID and AS Number Configure the basic BGP settings: config router bgp set as 65001 set router-id 10.154.4.119 set ebgp-multipath enable Step 2: Configure BGP Neighbors Add each CE node as a BGP neighbor: config neighbor edit "10.154.4.160" set remote-as 65002 set route-map-in "ACCEPT-CE-VIPS" set route-map-out "DENY-ALL" set soft-reconfiguration enable next edit "10.154.4.63" set remote-as 65002 set route-map-in "ACCEPT-CE-VIPS" set route-map-out "DENY-ALL" set soft-reconfiguration enable next end end Step 3: Create Prefix List for VIP Range Define the prefix list that matches the CE VIP range: config router prefix-list edit "CE-VIP-PREFIXES" config rule edit 1 set prefix 192.168.100.0 255.255.255.0 set ge 32 set le 32 next end next end Important: The ge 32 and le 32 parameters ensure we only match /32 prefixes within the 192.168.100.0/24 range, which is exactly what CE nodes advertise for their VIPs. Step 4: Create Route Maps Configure route maps to implement the filtering policies: Inbound Route Map (Accept VIP prefixes): config router route-map edit "ACCEPT-CE-VIPS" config rule edit 1 set match-ip-address "CE-VIP-PREFIXES" next end next end Outbound Route Map (Deny all advertisements): config router route-map edit "DENY-ALL" config rule edit 1 set action deny next end next end Step 5: Verify BGP Configuration After applying the configuration, verify the BGP sessions and routes: Check BGP neighbor status: get router info bgp summary VRF 0 BGP router identifier 10.154.4.119, local AS number 65001 BGP table version is 4 1 BGP AS-PATH entries 0 BGP community entries Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd 10.154.4.33 4 65002 2092 2365 0 0 0 00:05:33 1 10.154.4.160 4 65002 2074 2346 0 0 0 00:14:14 1 Total number of neighbors 2 Verify ECMP routes: get router info routing-table bgp Routing table for VRF=0 B 192.168.100.10/32 [20/255] via 10.154.4.160 (recursive is directly connected, port2), 00:00:11, [1/0] [20/255] via 10.154.4.33 (recursive is directly connected, port2), 00:00:11, [1/0] Palo Alto Networks Configuration Palo Alto Networks firewalls provide enterprise-grade security with comprehensive routing capabilities. This section covers the minimum BGP configuration for peering with Customer Edge nodes. Note: This part is assuming that Palo Alto firewall is configured in the new "Advanced Routing Engine" mode. And we will use the logical-router named "default". Step 1: Configure ECMP parameters set network logical-router default vrf default ecmp enable yes set network logical-router default vrf default ecmp max-path 4 set network logical-router default vrf default ecmp algorithm ip-hash Step 2: Configure objects IPs and firewall rules for BGP peering set address CE1 ip-netmask 10.154.4.160/32 set address CE2 ip-netmask 10.154.4.33/32 set address-group BGP_PEERS static [ CE1 CE2 ] set address LOCAL_BGP_IP ip-netmask 10.154.4.119/32 set rulebase security rules ALLOW_BGP from service set rulebase security rules ALLOW_BGP to service set rulebase security rules ALLOW_BGP source LOCAL_BGP_IP set rulebase security rules ALLOW_BGP destination BGP_PEERS set rulebase security rules ALLOW_BGP application bgp set rulebase security rules ALLOW_BGP service application-default set rulebase security rules ALLOW_BGP action allow Step 3: Palo Alto Configuration Summary (CLI Format) set network routing-profile filters prefix-list ALLOWED_PREFIXES type ipv4 ipv4-entry 1 prefix entry network 192.168.100.0/24 set network routing-profile filters prefix-list ALLOWED_PREFIXES type ipv4 ipv4-entry 1 prefix entry greater-than-or-equal 32 set network routing-profile filters prefix-list ALLOWED_PREFIXES type ipv4 ipv4-entry 1 prefix entry less-than-or-equal 32 set network routing-profile filters prefix-list ALLOWED_PREFIXES type ipv4 ipv4-entry 1 action permit set network routing-profile filters prefix-list ALLOWED_PREFIXES description "Allow only m32 inside 192.168.100.0m24" set network routing-profile filters prefix-list DENY_ALL type ipv4 ipv4-entry 1 prefix entry network 0.0.0.0/0 set network routing-profile filters prefix-list DENY_ALL type ipv4 ipv4-entry 1 prefix entry greater-than-or-equal 0 set network routing-profile filters prefix-list DENY_ALL type ipv4 ipv4-entry 1 prefix entry less-than-or-equal 32 set network routing-profile filters prefix-list DENY_ALL type ipv4 ipv4-entry 1 action deny set network routing-profile filters prefix-list DENY_ALL description "Deny all prefixes" set network routing-profile bgp filtering-profile FILTER_INBOUND ipv4 unicast inbound-network-filters prefix-list ALLOWED_PREFIXES set network routing-profile bgp filtering-profile FILTER_OUTBOUND ipv4 unicast inbound-network-filters prefix-list DENY_ALL set network logical-router default vrf default bgp router-id 10.154.4.119 set network logical-router default vrf default bgp local-as 65001 set network logical-router default vrf default bgp install-route yes set network logical-router default vrf default bgp enable yes set network logical-router default vrf default bgp peer-group BGP_PEERS type ebgp set network logical-router default vrf default bgp peer-group BGP_PEERS address-family ipv4 ipv4-unicast-default set network logical-router default vrf default bgp peer-group BGP_PEERS filtering-profile ipv4 FILTER_INBOUND set network logical-router default vrf default bgp peer-group BGP_PEERS filtering-profile ipv4 FILTER_OUTBOUND set network logical-router default vrf default bgp peer-group BGP_PEERS peer CE1 peer-as 65002 set network logical-router default vrf default bgp peer-group BGP_PEERS peer CE1 local-address interface ethernet1/2 set network logical-router default vrf default bgp peer-group BGP_PEERS peer CE1 local-address ip svc-intf-ip set network logical-router default vrf default bgp peer-group BGP_PEERS peer CE1 peer-address ip 10.154.4.160 set network logical-router default vrf default bgp peer-group BGP_PEERS peer CE2 peer-as 65002 set network logical-router default vrf default bgp peer-group BGP_PEERS peer CE2 local-address interface ethernet1/2 set network logical-router default vrf default bgp peer-group BGP_PEERS peer CE2 local-address ip svc-intf-ip set network logical-router default vrf default bgp peer-group BGP_PEERS peer CE2 peer-address ip 10.154.4.33 Step 4: Verify BGP Configuration After committing the configuration, verify the BGP sessions and routes: Check BGP neighbor status: run show advanced-routing bgp peer status logical-router default Logical Router: default ============== Peer Name: CE2 BGP State: Established, up for 00:01:55 Peer Name: CE1 BGP State: Established, up for 00:00:44 Verify ECMP routes: run show advanced-routing route logical-router default Logical Router: default ========================== flags: A:active, E:ecmp, R:recursive, Oi:ospf intra-area, Oo:ospf inter-area, O1:ospf ext 1, O2:ospf ext 2 destination protocol nexthop distance metric flag tag age interface 0.0.0.0/0 static 10.154.1.1 10 10 A 01:47:33 ethernet1/1 10.154.1.0/24 connected 0 0 A 01:47:37 ethernet1/1 10.154.1.99/32 local 0 0 A 01:47:37 ethernet1/1 10.154.4.0/24 connected 0 0 A 01:47:37 ethernet1/2 10.154.4.119/32 local 0 0 A 01:47:37 ethernet1/2 192.168.100.10/32 bgp 10.154.4.33 20 255 A E 00:01:03 ethernet1/2 192.168.100.10/32 bgp 10.154.4.160 20 255 A E 00:01:03 ethernet1/2 total route shown: 7 Implementing CE Isolation for Maintenance As discussed in Part One, one of the key advantages of BGP-based deployments is the ability to gracefully isolate CE nodes for maintenance. Here’s how to implement this in practice. Isolation via F5 Distributed Cloud Console To isolate a CE node from receiving traffic, in your BGP peer object, edit the Peer and: Change the Outbound BGP routing policy from the one that is allowing the VIP prefixes to the one that is denying the VIP prefixes The CE will stop advertising its VIP routes, and within seconds (based on BGP timers), the upstream firewall will remove this CE from its ECMP paths. Verification During Maintenance On your firewall, verify the route withdrawal (in this case we are using a Fortigate firewall): get router info bgp summary VRF 0 BGP router identifier 10.154.4.119, local AS number 65001 BGP table version is 4 1 BGP AS-PATH entries 0 BGP community entries Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd 10.154.4.33 4 65002 2070 2345 0 0 0 00:04:05 0 10.154.4.160 4 65002 2057 2326 0 0 0 00:12:46 1 Total number of neighbors 2 We are not receiving any prefixes anymore for the 10.154.4.33 peer. get router info routing-table bgp Routing table for VRF=0 B 192.168.100.10/32 [20/255] via 10.154.4.160 (recursive is directly connected, port2), 00:06:34, [1/0] End we have now only one path. Restoring the CE in the data path After maintenance is complete: Return to the BGP Peer configuration in the F5XC Console Restore the original export policy (permit VIP prefixes) Save the configuration On the upstream firewall, confirm that CE prefixes are received again and that ECMP paths are restored Conclusion This article has provided the complete implementation details for deploying BGP and ECMP with F5 Distributed Cloud Customer Edge nodes. You now have: A clear understanding of the architecture at both high and low levels Step-by-step instructions for configuring BGP in F5 Distributed Cloud Console Ready-to-use configurations for both Fortinet FortiGate and Palo Alto Networks firewalls Practical guidance for implementing graceful CE isolation for maintenance By combining the concepts from the first article with the practical configurations in this article, you can build a robust, highly available application delivery infrastructure that maximizes resource utilization, provides automatic failover, and enables zero-downtime maintenance operations. The BGP-based approach transforms your Customer Edge deployment from a traditional Active/Standby model into a full active topology where every node contributes to handling traffic, and any node can be gracefully removed for maintenance without impacting your users.55Views2likes0CommentsHow can I get started with iCall
Hi all . Recently, I want to learn how to use iCall to do some automated operations work, but I haven't seen any comprehensive tutorials about iCall on askf5. Are there any good articles I can refer to for learning? Do I need to systematically learn Tcl first? I still have a question about iCall. What is the difference between using iCall and using shell scripts with scheduled tasks to achieve automated management and configuration of F5? Best Regards132Views0likes2CommentsTerraform AS3 code for GTM Only.
Hello All, I am really really suffering here :( Have been looking for GTM ONLY code in AS3 form, need a simple code hardcoded values will also work. I have seen documentation and couldn't see exact use case. We are doing POC for where VMs are direct;y added to GTM and NO LTM component are there. I can't post my LTM + GTM code as its in office. Would really appreciate any help and guidance here. Any simple code work snippet using only AS3 please.273Views0likes9Comments- 473Views2likes6Comments
VIPTest: Rapid Application Testing for F5 Environments
VIPTest is a Python-based tool for efficiently testing multiple URLs in F5 environments, allowing quick assessment of application behavior before and after configuration changes. It supports concurrent processing, handles various URL formats, and provides detailed reports on HTTP responses, TLS versions, and connectivity status, making it useful for migrations and routine maintenance.1.1KViews5likes2CommentsiCall - All New Event-Based Automation System
The community has long requested the ability to affect change to the BIG-IP configuration by some external factor, be it iRules trigger, process or system failure event, or even monitor results. Well, rest easy folks, among the many features arriving with BIG-IP version 11.4 is iCall, a completely new event-based granular internal automation system. iCall gives you comprehensive control over BIG-IP configuration, leveraging the TMSH control plane and seamlessly integrating the data plane as well. Components The iCall system has three components: events, handlers, and scripts. At a high level, an event is "the message," some named object that has context (key value pairs), scope (pool, virtual, etc), origin (daemon, iRules), and a timestamp. Events occur when specific, configurable, pre-defined conditions are met. A handler initiates a script and is the decision mechanism for event data. There are three types of handlers: Triggered - reacts to a specific event Periodic - reacts to a timer Perpetual - runs under the control of a daemon Finally, there are scripts. Scripts perform the action as a result of event and handler. The scripts are TMSH Tcl scripts organized under the /sys icall section of the system. Flow Basic flows for iCall configurations start with an event followed by a handler kicking off a script. A more complex example might start with a periodic handler that kicks off a script that generates an event that another handler picks up and generates another script. These flows are shown in the image below. A Brief Example We'll release a few tech tips on the development aspect of iCall in the coming weeks, but in the interim here's a prime use case. Often an event will happen that an operator will want to grab a tcpdump on the interesting traffic occurring during that event, but the reaction time isn't quick enough. Enter iCall! First, configure an alert in /config/user_alert.conf for a pool member down: alert local-http-10-2-80-1-80-DOWN "Pool /Common/my_pool member /Common/10.2.80.1:80 monitor status down" { exec command="tmsh generate sys icall event tcpdump context { { name ip value 10.2.80.1 } { name port value 80 } { name vlan value internal } { name count value 20 } }" } You'll need one of these stanzas for each pool member you want to monitor in this way. Next, Create the iCall script: modify script tcpdump { app-service none definition { set date [clock format [clock seconds] -format "%Y%m%d%H%M%S"] foreach var { ip port count vlan } { set $var $EVENT::context($var) } exec tcpdump -ni $vlan -s0 -w /var/tmp/${ip}_${port}-${date}.pcap -c $count host $ip and port $port } description none events none } Finally, create the iCall handler to trigger the script: sys icall handler triggered tcpdump { script tcpdump subscriptions { tcpdump { event-name tcpdump } } } Ready. Set. Go! That's one example of a triggered handler. We have many more examples of perpetual and periodic handlers in the codeshare with several use cases for your immediate use and testing. Get ready to jump aboard the iCall automation/orchestration train!2.9KViews0likes4CommentsUsing Aliases to launch F5 AMI Images in AWS Marketplace
F5 lists 82 product offerings in the AWS Marketplace as Amazon Machine Images (AMI). Each version of each product in each AWS Region has a different AMI. That’s around 22,000 images! Each AMI is identified by an AMI ID. You use the AMI ID to indicate which AMI you want to use when launching an F5 product. You can find AMI IDs using the AWS Web Console, but the AWS CLI is the best tool for the job. Searching for AMIs using the AWS CLI Here’s how you find the AMI IDs for version 17.5.1.2 of BIG-IP Virtual Edition in the us-east-1 AWS region: aws ec2 describe-images --owners aws-marketplace --filters 'Name=name,Values=F5 BIGIP-17.5.1.2*' --query "sort_by(Images,&Name)[:]. {Description: Description, Id:ImageId }" --region us-east-1 --output table ---------------------------------------------------------------------------------------------------- | DescribeImages | +------------------------------------------------------------------------+-------------------------+ | Description | Id | +------------------------------------------------------------------------+-------------------------+ | F5 BIGIP-17.5.1.2-0.0.5 BYOL-All Modules 1Boot Loc-250916013758 | ami-0948eabdf29ef2a8f | | F5 BIGIP-17.5.1.2-0.0.5 BYOL-All Modules 2Boot Loc-250916015535 | ami-0cb3aaa67967ad029 | | F5 BIGIP-17.5.1.2-0.0.5 BYOL-LTM 1Boot Loc-250916013616 | ami-05d70b82c9031ff39 | | F5 BIGIP-17.5.1.2-0.0.5 BYOL-LTM 2Boot Loc-250916014744 | ami-0b6021cc939308f3e | | F5 BIGIP-17.5.1.2-0.0.5 BYOL-encrypted-threat-protection-250916015535 | ami-01f4fde300d3763be | | F5 BIGIP-17.5.1.2-0.0.5 PAYG-AWF Plus 16vCPU-250916015534 | ami-015474056159387ac | | F5 BIGIP-17.5.1.2-0.0.5 PAYG-Adv WAF Plus 200Mbps-250916015522 | ami-06ce5b03dce2a059d | | F5 BIGIP-17.5.1.2-0.0.5 PAYG-Adv WAF Plus 25Mbps-250916015520 | ami-0826808708df97480 | | F5 BIGIP-17.5.1.2-0.0.5 PAYG-Adv WAF Plus 3Gbps-250916015523 | ami-08c63c8f7ca71cf37 | | F5 BIGIP-17.5.1.2-0.0.5 PAYG-Best Plus 10Gbps-250916015532 | ami-0e806ef17838760e4 | | F5 BIGIP-17.5.1.2-0.0.5 PAYG-Best Plus 1Gbps-250916015530 | ami-05e31c2a0ac9ec050 | | F5 BIGIP-17.5.1.2-0.0.5 PAYG-Best Plus 200Mbps-250916015528 | ami-02dc0995af98d0710 | | F5 BIGIP-17.5.1.2-0.0.5 PAYG-Best Plus 25Mbps-250916015527 | ami-08b8f2daefde800e9 | | F5 BIGIP-17.5.1.2-0.0.5 PAYG-Best Plus 5Gbps-250916015531 | ami-0d16154bb1102f3e9 | | F5 BIGIP-17.5.1.2-0.0.5 PAYG-Better 10Gbps-250916015512 | ami-05c9527fff191feba | | F5 BIGIP-17.5.1.2-0.0.5 PAYG-Better 1Gbps-250916015510 | ami-05ce2932601070d5c | | F5 BIGIP-17.5.1.2-0.0.5 PAYG-Better 200Mbps-250916015508 | ami-0f6044db3900ba46f | | F5 BIGIP-17.5.1.2-0.0.5 PAYG-Better 25Mbps-250916014542 | ami-0de57aba160170358 | | F5 BIGIP-17.5.1.2-0.0.5 PAYG-Better 5Gbps-250916015511 | ami-04271103ab2d1369d | | F5 BIGIP-17.5.1.2-0.0.5 PAYG-Good 10Gbps-250916014739 | ami-0d06d2a097d7bb47a | | F5 BIGIP-17.5.1.2-0.0.5 PAYG-Good 1Gbps-250916014737 | ami-01707e969ebcc6138 | | F5 BIGIP-17.5.1.2-0.0.5 PAYG-Good 200Mbps-250916014735 | ami-06f9a44562d94f992 | | F5 BIGIP-17.5.1.2-0.0.5 PAYG-Good 25Mbps-250916013626 | ami-0aa2bca574c66af13 | | F5 BIGIP-17.5.1.2-0.0.5 PAYG-Good 5Gbps-250916014738 | ami-01951e02c52deef85 | | F5 BIGIP-17.5.1.2-0.0.5 PAYG-PVE Adv WAF Plus 200Mbps-0916015525 | ami-03df50dfc04f19df5 | | F5 BIGIP-17.5.1.2-0.0.5 PAYG-PVE Adv WAF Plus 25Mbps-50916015524 | ami-0777c069eaae20ea1 | +------------------------------------------------------------------------+-------------------------+ This command shows all 17.5.1* releases of the "PayGo Good 1Gbps" flavor of BIG-IP in the us-west-1 region sorted by newest release first: aws ec2 describe-images --owners aws-marketplace --filters 'Name=name,Values=F5 BIGIP-17.5.1*PAYG-Good 1Gbps*' --query "reverse(sort_by(Images,&CreationDate))[:]. {Description: Name, Id:ImageId , date:CreationDate}" --region us-west-1 --output table ---------------------------------------------------------------------------------------------------------------------------------------------------- | DescribeImages | +--------------------------------------------------------------------------------------------+------------------------+----------------------------+ | Description | Id | date | +--------------------------------------------------------------------------------------------+------------------------+----------------------------+ | F5 BIGIP-17.5.1.2-0.0.5 PAYG-Good 1Gbps-250916014737-7fb2f9db-2a12-4915-9abb-045b6388cccd | ami-0de8ca1229be5f7fe | 2025-09-16T23:12:28.000Z | | F5 BIGIP-17.5.1-0.80.7 PAYG-Good 1Gbps-250811055424-7fb2f9db-2a12-4915-9abb-045b6388cccd | ami-09afcec6f36494382 | 2025-08-15T19:03:23.000Z | | F5 BIGIP-17.5.1-0.0.7 PAYG-Good 1Gbps-250618090310-7fb2f9db-2a12-4915-9abb-045b6388cccd | ami-03e389e112872fd53 | 2025-07-01T06:00:44.000Z | +--------------------------------------------------------------------------------------------+------------------------+----------------------------+ Notice that the same BIG-IP VE release has a different AMI ID in each AWS region. Attempting to launch a product in one region using an AMI ID from a different region will fail. This causes a problem when a shell script or automation tool is used to launch new EC2 instances and the AMI IDs have been hardcoded for one region and you attempt to use it in another. Wouldn’t it be nice to have a single AMI identifier that works in all AWS regions? Introducing AMI Aliases The Ami Alias is a similar ID to the AMI ID, but it’s easier to use in automation. An AMI alias has the form /aws/service/marketplace/prod-<identifier>/<version> , for example, "PayGo Good 1Gbps" /aws/service/marketplace/prod-s6e6miuci4yts/17.5.1.2-0.0.5 You can use this Ami Alias ID in any Region, and AWS automatically maps it to the correct Regional AMI ID. BIG-IP AMI Alias Identifiers F5 Advanced WAF with LTM, IPI, and Threat Campaigns (PAYG, 16vCPU) prod-qqgc2ltsirpio F5 Advanced WAF with LTM, IPI, and Threat Campaigns (PAYG, 200Mbps) prod-yajbds56coa24 F5 Advanced WAF with LTM, IPI, and Threat Campaigns (PAYG, 25Mbps) prod-qiufc36l6sepa F5 Advanced WAF with LTM, IPI, and Threat Campaigns (PAYG, 3Gbps) prod-fp5qrfirjnnty F5 BIG-IP BEST with IPI and Threat Campaigns (PAYG, 10Gbps) prod-w2p3rtkjrjmw6 F5 BIG-IP BEST with IPI and Threat Campaigns (PAYG, 1Gbps) prod-g3tye45sqm5d4 F5 BIG-IP BEST with IPI and Threat Campaigns (PAYG, 200Mbps) prod-dnpovgowtyz3o F5 BIG-IP BEST with IPI and Threat Campaigns (PAYG, 25Mbps) prod-wjoyowh6kba46 F5 BIG-IP BEST with IPI and Threat Campaigns (PAYG, 5Gbps) prod-hlx7g47cksafk F5 BIG-IP VE - ALL (BYOL, 1 Boot Location) prod-zvs3u7ov36lig F5 BIG-IP VE - ALL (BYOL, 2 Boot Locations) prod-ubfqxbuqpsiei F5 BIG-IP VE - LTM/DNS (BYOL, 1 Boot Location) prod-uqhc6th7ni37m F5 BIG-IP VE - LTM/DNS (BYOL, 2 Boot Locations) prod-o7jz5ohvldaxg F5 BIG-IP Virtual Edition - BETTER (PAYG, 10Gbps) prod-emsxkvkzwvs3o F5 BIG-IP Virtual Edition - BETTER (PAYG, 1Gbps) prod-4idzu4qtdmzjg F5 BIG-IP Virtual Edition - BETTER (PAYG, 200Mbps) prod-firaggo6h7bt6 F5 BIG-IP Virtual Edition - BETTER (PAYG, 25Mbps) prod-wijbh7ib34hyy F5 BIG-IP Virtual Edition - BETTER (PAYG, 5Gbps) prod-rfglxslpwq64g F5 BIG-IP Virtual Edition - GOOD (PAYG, 10Gbps) prod-54qdbqglgkiue F5 BIG-IP Virtual Edition - GOOD (PAYG, 1Gbps) prod-s6e6miuci4yts F5 BIG-IP Virtual Edition - GOOD (PAYG, 200Mbps) prod-ynybgkyvilzrs F5 BIG-IP Virtual Edition - GOOD (PAYG, 25Mbps) prod-6zmxdpj4u4l5g F5 BIG-IP Virtual Edition - GOOD (PAYG, 5Gbps) prod-3ze6zaohqssua F5 BIG-IQ Virtual Edition - (BYOL) prod-igv63dkxhub54 F5 Encrypted Threat Protection prod-bbtl6iceizxoi F5 Per-App-VE Advanced WAF with LTM, IPI, TC (PAYG, 200Mbps) prod-gkzfxpnvn53v2 F5 Per-App-VE Advanced WAF with LTM, IPI, TC (PAYG, 25Mbps) prod-qu34r4gipys4s NGINX Plus Alias Identifiers NGINX Plus Basic - Amazon Linux 2 (LTS) AMI prod-jhxdrfyy2jtva NGINX Plus Developer - Amazon Linux 2 (LTS) prod-kbeepohgkgkxi NGINX Plus Developer - Amazon Linux 2 (LTS) ARM Graviton prod-vulv7pmlqjweq NGINX Plus Developer - Amazon Linux 2023 prod-2zvigd3ltowyy NGINX Plus Developer - Amazon Linux 2023 ARM Graviton prod-icspnobisidru NGINX Plus Developer - RHEL 8 prod-tquzaepylai4i NGINX Plus Developer - RHEL 9 prod-hwl4zfgzccjye NGINX Plus Developer - Ubuntu 22.04 prod-23ixzkz3wt5oq NGINX Plus Developer - Ubuntu 24.04 prod-tqr7jcokfd7cw NGINX Plus FIPS Premium - RHEL 9 prod-v6fhyzzkby6c2 NGINX Plus Premium - Amazon Linux 2 (LTS) AMI prod-4dput2e45kkfq NGINX Plus Premium - Amazon Linux 2 (LTS) ARM Graviton prod-56qba3nacijjk NGINX Plus Premium - Amazon Linux 2023 prod-w6xf4fmhpc6ju NGINX Plus Premium - Amazon Linux 2023 ARM Graviton prod-e2iwqrpted4kk NGINX Plus Premium - RHEL 8 AMI prod-m2v4zstxasp6s NGINX Plus Premium - RHEL 9 prod-rytmqzlxdneig NGINX Plus Premium - Ubuntu 22.04 prod-dtm5ujpv7kkro NGINX Plus Premium - Ubuntu 24.04 prod-opg2qh33mi4pk NGINX Plus Standard - Amazon Linux 2 (LTS) AMI prod-mdgdnfftmj7se NGINX Plus Standard - Amazon Linux 2 (LTS) ARM Graviton prod-2kagbnj7ij6zi NGINX Plus Standard - Amazon Linux 2023 prod-i25cyug3btfvk NGINX Plus Standard - Amazon Linux 2023 ARM Graviton prod-6s5rvlqlgrt74 NGINX Plus Standard - RHEL 8 prod-ebhpntvlfwluc NGINX Plus Standard - RHEL 9 prod-3e7rk2ombbpfa NGINX Plus Standard - Ubuntu 22.04 prod-7rhflwjy5357e NGINX Plus Standard - Ubuntu 24.04 prod-b4rly35ct3dlc NGINX Plus with NGINX App Protect Developer - Amazon Linux 2 prod-pjmfzy5htmaks NGINX Plus with NGINX App Protect Developer - Debian 11 prod-ixsytlu2eluqa NGINX Plus with NGINX App Protect Developer - RHEL 8 prod-6v57ggy3dqb6c NGINX Plus with NGINX App Protect Developer - Ubuntu 20.04 prod-4a4g7h7mpepas NGINX Plus with NGINX App Protect DoS Developer - Amazon Linux 2023 prod-fmqayhbsryoz2 NGINX Plus with NGINX App Protect DoS Developer - Debian 11 prod-4e5fwakhrn36y NGINX Plus with NGINX App Protect DoS Developer - RHEL 8 prod-ubid75ixhf34a NGINX Plus with NGINX App Protect DoS Developer - RHEL 9 prod-gg7mi5njfuqcw NGINX Plus with NGINX App Protect DoS Developer - Ubuntu 20.04 prod-qiwzff7orqrmy NGINX Plus with NGINX App Protect DoS Developer - Ubuntu 22.04 prod-h564ffpizhvic NGINX Plus with NGINX App Protect DoS Developer - Ubuntu 24.04 prod-wckvpxkzj7fvk NGINX Plus with NGINX App Protect DoS Premium - Amazon Linux 2023 prod-lza5c4nhqafpk NGINX Plus with NGINX App Protect DoS Premium - Debian 11 prod-ych3dq3r44gl2 NGINX Plus with NGINX App Protect DoS Premium - RHEL 8 prod-266ker45aot7g NGINX Plus with NGINX App Protect DoS Premium - RHEL 9 prod-6qrqjtainjlaa NGINX Plus with NGINX App Protect DoS Premium - Ubuntu 20.04 prod-hagmbnluc5zmw NGINX Plus with NGINX App Protect DoS Premium - Ubuntu 22.04 prod-y5iwq6gk4x4yq NGINX Plus with NGINX App Protect DoS Premium - Ubuntu 24.04 prod-k3cb7avaushvq NGINX Plus with NGINX App Protect Premium - Amazon Linux 2 prod-tlghtvo66zs5u NGINX Plus with NGINX App Protect Premium - Debian 11 prod-6kfdotc3mw67o NGINX Plus with NGINX App Protect Premium - RHEL 8 prod-okwnxdlnkmqhu NGINX Plus with NGINX App Protect Premium - Ubuntu 20.04 prod-5wn6ltuzpws4m NGINX Plus with NGINX App Protect WAF + DoS Premium - Amazon Linux 2023 prod-mualblirvfcqi NGINX Plus with NGINX App Protect WAF + DoS Premium - Debian 11 prod-k2rimvjqipvm2 NGINX Plus with NGINX App Protect WAF + DoS Premium - RHEL 8 prod-6nlubep3hg4go NGINX Plus with NGINX App Protect WAF + DoS Premium - Ubuntu 18.04 prod-f2diywsozd22m NGINX Plus with NGINX App Protect WAF + DoS Premium - Ubuntu 20.04 prod-ajcsh5wsfuen2 NGINX Plus with NGINX App Protect WAF + DoS Premium - Ubuntu 22.04 prod-6adjgf6yl7hek NGINX Plus with NGINX App Protect WAF + DoS Premium - Ubuntu 24.04 prod-autki7guiiqio Using AMI Aliases for BIG-IP The following example shows using an AMI alias to launch a new "F5 BIG-IP Virtual Edition - GOOD (PAYG, 1Gbps)" instance version 17.5.1.2-0.0.5 by using the AWS CLI. aws ec2 run-instances --image-id resolve:ssm:/aws/service/marketplace/prod-s6e6miuci4yts/17.5.1.2-0.0.5 --instance-type m5.xlarge --key-name MyKeyPair The next example shows a CloudFormation template that accepts the AMI alias as an input parameter to create an instance. AWSTemplateFormatVersion: 2010-09-09 Parameters: AmiAlias: Description: AMI alias Type: 'String' Resources: MyEC2Instance: Type: AWS::EC2::Instance Properties: ImageId: !Sub "resolve:ssm:${AmiAlias}" InstanceType: "g4dn.xlarge" Tags: -Key: "Created from" Value: !Ref AmiAlias Using AMI Aliases for NGINX Plus NGINX Plus images in the AWS Marketplace are not version specific, so just use "latest" as the version to launch. For example, this will launch NGINX Plus Premium on Ubuntu 24.04: aws ec2 run-instances --image-id resolve:ssm:/aws/service/marketplace/prod-opg2qh33mi4pk/latest --instance-type c5.large --key-name MyKeyPair Finding AMI Aliases in AWS Marketplace AMI aliases are new to the AWS Marketplace, so not all products have them. To locate the alias for an AMI you use often, you need to resort to the AWS Marketplace web console. Here are the step-by-step instructions provided by Amazon: 1. Navigate to AWS Marketplace Go to AWS Marketplace Sign in to your AWS account 2. Find and Subscribe to the Product Search for or browse to find your desired product Click on the product listing Click "Continue to Subscribe" Accept the terms and subscribe to the product 3. Configure the Product After subscribing, click "Continue to Configuration" Select your desired: Delivery Method (if multiple options are available) Software Version Region 4. Locate the AMI Alias At the bottom of the configuration page, you'll see: AMI ID: ami-1234567890EXAMPLE AMI Alias: /aws/service/marketplace/prod-<identifier>/<version> New Tools for Your AMI Hunt In this article, we focused on using AMI Aliases to select the right F5 product to launch in AWS EC2. But, there’s one more takeaway. Scroll back up to the top of this page and take a closer look at the "aws ec2 describe-images" commands. These commands use JMESpath to filter, sort, and format the output. Find out more about filtering the output of AWS CLI commands here.198Views4likes0CommentsHow to deploy an F5XC SMSv2 site with the help of automation
To deploy an F5XC Customer Edge (CE) in SMSv2 mode with the help of automation, it is necessary to follow the three main steps below: Verify the prerequisites at the technical architecture level for the environment in which the CE will be deployed (public cloud or datacenter/private cloud) Create the necessary objects at the F5XC platform level Deploy the CE instance in the target environment We will provide more details for all the steps as well as the simplest Terraform skeleton code to deploy an F5XC CE in the main cloud environments (AWS, GCP and Azure). Step 1: verification of architecture prerequisites To be deployed, a CE must have an interface (which is and will always be its default interface) that has Internet access. This access is necessary to perform the installation steps and provide the "control plane" part to the CE. The name of this interface will be referred to as « Site Local Outside or SLO ». This Internet access can be provided in several ways: "Cloud provider" type site: Public IP address directly on the interface Private IP address on the interface and use of a NAT Gateway as default route Private IP address on the interface and use of a security appliance (firewall type, for example) as default route Private IP address on the interface and use of an explicit proxy Datacenter or "private cloud" type site: Private IP address on the interface and use of a security appliance (firewall type, for example) or router as default route Private IP address on the interface and use of an explicit proxy Furthermore, public IP addresses on the interface and "direct" routing to Internet It is highly recommended (not to say required) to add at least a second interface during the site first deployment. Because depending on the infrastructure (for example, GCP) it is not possible to add network interfaces after the creation of the VM. Even on platforms where adding a network interface is possible, a reboot of the F5XC CE is needed. An F5XC SMSv2 CE can have up to eight interfaces overall. Additional interfaces are (most of the time) used as “Site Local Inside or SLI” interfaces or "Segment interfaces" (that specific part will be covered in another article). Basic CE matrix flow. Interface Direction and protocols Use case / purpose SLO Egress – TCP 53 (DNS), TCP 443 (HTTPS), UDP 53 (DNS), UDP 123 (NTP), UDP 4500 (IPSEC) Registration, software download and upgrade, VPN tunnels towards F5XC infrastructure for control plane SLO Ingress – None RE / CE use case CE to CE use case by using F5 ADN SLO Ingress – UDP 4500 Site Mesh Group for direct CE to CE secure connectivity over SLO interface (no usage of F5 ADN) SLO Ingress – TCP 80 (HTTP), TCP 443 (HTTPS) HTTP/HTTPS LoadBalancer on the CE for WAAP use cases SLI Egress – Depends on the use case / application, but if the security constraint permits it, no restriction SLI Ingress – Depends on the use case / application, but if the security constraint permits it, no restriction For advanced details regarding IPs and domains used for: Registration / software upgrade Tunnels establishment towards F5XC infrastructure Please refer to: https://docs.cloud.f5.com/docs-v2/platform/reference/network-cloud-ref#new-secure-mesh-v2-sites Step 2: creation of necessary objects at the F5XC platform level This step will be performed by the Terraform script by: Creating an SMSv2 token Creating an F5XC site of SMSv2 type API certificate and terraform variables First, it is necessary to create an API certificate. Please follow the instructions in our official documentation here: https://docs.cloud.f5.com/docs-v2/administration/how-tos/user-mgmt/Credentials#generate-api-certificate-for-my-credentials or here: https://docs.cloud.f5.com/docs-v2/administration/how-tos/user-mgmt/Credentials#generate-api-certificate-for-service-credentials Depending on the type of API certificate you want to create and use (user credential or service credential). In the Terraform variables, those are the ones that you need to modify: The “location of the api key” should be the full path where your API P12 file is stored. variable "f5xc_api_p12_file" { type = string description = "F5XC tenant api key" default = "<location of the api key>" } If your F5XC console URL is https://mycompany.console.ves.volterra.io then the value for the f5xc_api_url will be https://mycompany.console.ves.volterra.io/api variable "f5xc_api_url" { type = string default = "https://<tenant name>.console.ves.volterra.io/api" } When using terraform, you will also need to export the P12 certificate password as an environment variable. export VES_P12_PASSWORD=<password of P12 cert> Creation of the SMSv2 token. This is achieved with the following Terraform code and with the “type = 1” parameter. # #F5XC objects creation # resource "volterra_token" "smsv2-token" { depends_on = [volterra_securemesh_site_v2.site] name = "${var.f5xc-ce-site-name}-token" namespace = "system" type = 1 site_name = volterra_securemesh_site_v2.site.name } Creation of the F5XC SMSv2 site. This is achieved with the following Terraform code (example for GCP). This is where you need to configure all the options you want to be applied at site creation. resource "volterra_securemesh_site_v2" "site" { name = format("%s-%s", var.f5xc-ce-site-name, random_id.suffix.hex) namespace = "system" block_all_services = false logs_streaming_disabled = true enable_ha = false labels = { "ves.io/provider" = "ves-io-GCP" } re_select { geo_proximity = true } gcp { not_managed {} } } For instance, if you want to use a corporate proxy and have the CE tunnels passing through the proxy, the following should be added: custom_proxy { enable_re_tunnel = true proxy_ip_address = "10.154.32.254" proxy_port = 8080 } And if you want to force CE to REs connectivity with SSL, the following should be added: tunnel_type = "SITE_TO_SITE_TUNNEL_SSL" Step 3: creation of the CE instance in the target environment This step will be performed by the Terraform script by: Generating a cloud-init file Creating the F5XC site instance in the environment based on the marketplace images or the available F5XC images How to list F5XC available images in Azure: az vm image list --all --publisher f5-networks --offer f5xc_customer_edge --sku f5xccebyol --output table | sort -k4 -V And check in the output, the one with the highest version. x64 f5xc_customer_edge f5-networks f5xccebyol f5-networks:f5xc_customer_edge:f5xccebyol:9.2025.17 9.2025.17 x64 f5xc_customer_edge f5-networks f5xccebyol f5-networks:f5xc_customer_edge:f5xccebyol:2024.40.1 2024.40.1 x64 f5xc_customer_edge f5-networks f5xccebyol f5-networks:f5xc_customer_edge:f5xccebyol:2024.40.2 2024.40.2 x64 f5xc_customer_edge f5-networks f5xccebyol f5-networks:f5xc_customer_edge:f5xccebyol:2024.44.1 2024.44.1 x64 f5xc_customer_edge f5-networks f5xccebyol_2 f5-networks:f5xc_customer_edge:f5xccebyol_2:2024.44.2 2024.44.2 Architecture Offer Publisher Sku Urn Version -------------- ------------------ ----------- ------------ ----------------------------------------------------- --------- We are going to re-use some of the parameters in the Terraform script, to instruct the Terraform code which image it should use. source_image_reference { publisher = "f5-networks" offer = "f5xc_customer_edge" sku = "f5xccebyol" version = "9.2025.17" } Also, for Azure, it’s needed to accept the legal terms of the F5XC CE image. This needs to be performed only once by running the following commands: Select the Azure subscription in which you are planning to deploy the F5XC CE: az account set -s <subscription-id> Accept the terms and conditions for the F5XC CE for this subscription: az vm image terms accept --publisher f5-networks --offer f5xc_customer_edge --plan f5xccebyol How to list F5XC available images in GCP: gcloud compute images list --project=f5-7626-networks-public --filter="name~'f5xc-ce'" --sort-by=~creationTimestamp --format="table(name,creationTimestamp)" And check in the output, the one with the highest version. NAME CREATION_TIMESTAMP f5xc-ce-crt-20250701-0123 2025-07-09T02:15:08.352-07:00 f5xc-cecrt-20250701-0099-9 2025-07-02T01:32:40.154-07:00 f5xc-ce-202505151709081 2025-06-25T22:31:23.295-07:00 How to list F5XC available images in AWS: aws ec2 describe-images \ --region eu-west-3 \ --filters "Name=name,Values=*f5xc-ce*" \ --query "reverse(sort_by(Images, &CreationDate))[*].{ImageId:ImageId,Name:Name,CreationDate:CreationDate}" \ --output table And check in the output, the ami with the latest creation date. Also, for AWS, it’s needed to accept the legal terms of the F5XC CE image. This needs to be performed only once. Go to this page in your AWS Console Then select "View purchase options" and then select "Subscribe". Putting everything together: Global overview We are going to use Azure as the target environment to deploy the F5XC CE. The CE will be deployed with two NICs, the SLO being in a public subnet and a public IP will be attached to the NIC. We assume that all the prerequisites from step 1 are met. Terraform skeleton for Azure is available here: https://github.com/veysph/Prod-TF/ It's not intended to be the perfect thing, just an example of the minimum basic things to deploy an F5XC SMSv2 CE with automation. Changes and enhancements based on the different needs you might have are more than welcome. It's really intended to be flexible and not too strict. Structure of the terraform directory: provider.tf contains everything that is related to the needed providers variables.tf contains all the variables used in the terraform files f5xc_sites.tf contains everything that is related to the F5XC objects creation main.tf contains everything to start the F5XC CE in the target environment Deployment Make all the relevant changes in variables.tf. Don't forget to export your P12 password as an environment variable (see Step 2, API certificate and terraform variables)! Then run, terraform init terraform plan terraform apply Should everything be correct at each step, you should get a CE object in the F5XC console, under Multi-Cloud Network Connect --> Manage --> Site Management --> Secure Mesh Sites v2419Views4likes1CommentStreamlining Dev Workflows: A Lightweight Self-Service Solution for Bypassing Bot Defense Safely
Automate the update of an F5 Distributed Cloud IP prefix set that’s already wired to a service policy** with the “Skip Bot Defense” option set. An approved developer hits a simple, secret endpoint; the system detects their current public IP and updates the designated IP set with a `/32`. Bot Defense is skipped for that IP on dev/test traffic—immediately. No tickets. No console spelunking. No risky, long-lived exemptions. At a glance Self-service: Developers add their _current_ IP in seconds. - Tight scope: Changes apply only to the dev/test services attached to that policy.114Views1like0Comments