The Concise Guide to Proxies
We often mention that the benefits derived from some application delivery controllers are due to the nature of being a full proxy. And in the same breath we might mention reverse, half, and forward proxies, which makes the technology sound more like a description of the positions on a sports team than an application delivery solution. So what does these terms really mean? Here's the lowdown on the different kinds of proxies in one concise guide. PROXIES Proxies (often called intermediaries in the SOA world) are hardware or software solutions that sit between the client and the server and do something to requests and sometimes responses. The most often heard use of the term proxy is in conjunction with anonymizing Web surfing. That's because proxies sit between your browser and your desired destination and proxy the connection; that is you talk to the proxy while the proxy talks to the web server and neither you nor the web server know about each other. Proxies are not all the same. Some are half proxies, some are full proxies; some are forward and some are reverse. Yes, that came excruciatingly close to sounding like a Dr. Seuss book. (Go ahead, you know you want to. You may even remember this from .. .well, when it was first circulated.) FORWARD PROXIES Forward proxies are probably the most well known of all proxies, primarily because most folks have dealt with them either directly or indirectly. Forward proxies are those proxies that sit between two networks, usually a private internal network and the public Internet. Forward proxies have also traditionally been employed by large service providers as a bridge between their isolated network of subscribers and the public Internet, such as CompuServe and AOL in days gone by. These are often referred to as "mega-proxies" because they managed such high volumes of traffic. Forward proxies are generally HTTP (Web) proxies that provide a number of services but primarily focus on web content filtering and caching services. These forward proxies often include authentication and authorization as a part of their product to provide more control over access to public content. If you've ever gotten a web page that says "Your request has been denied by blah blah blah. If you think this is an error please contact the help desk/your administrator" then you've probably used a forward proxy. REVERSE PROXIES A reverse proxy is less well known, generally because we don't use the term anymore to describe products used as such. Load balancers (application delivery controllers) and caches are good examples of reverse proxies. Reverse proxies sit in front of web and application servers and process requests for applications and content coming in from the public Internet to the internal, private network. This is the primary reason for the appellation "reverse" proxy - to differentiate it from a proxy that handles outbound requests. Reverse proxies are also generally focused on HTTP but in recent years have expanded to include a number of other protocols commonly used on the web such as streaming audio (RTSP), file transfers (FTP), and generally any application protocol capable of being delivered via UDP or TCP. HALF PROXIES Half-proxy is a description of the way in which a proxy, reverse or forward, handles connections. There are two uses of the term half-proxy: one describing a deployment configuration that affects the way connections are handled and one that describes simply the difference between a first and subsequent connections. The deployment focused definition of half-proxy is associated with a direct server return (DSR) configuration. Requests are proxied by the device, but the responses do not return through the device, but rather are sent directly to the client. For some types of data - particularly streaming protocols - this configuration results in improved performance. This configuration is known as a half-proxy because only half the connection (incoming) is proxied while the other half, the response, is not. The second use of the term "half-proxy" describes a solution in which the proxy performs what is known as delayed binding in order to provide additional functionality. This allows the proxy to examine the request before determining where to send it. Once the proxy determines where to route the request, the connection between the client and the server are "stitched" together. This is referred to as a half-proxy because the initial TCP handshaking and first requests are proxied by the solution, but subsequently forwarded without interception. Half proxies can look at incoming requests in order to determine where the connection should be sent and can even use techniques to perform layer 7 inspection, but they are rarely capable of examining the responses. Almost all half-proxies fall into the category of reverse proxies. FULL PROXIES Full proxy is also a description of the way in which a proxy, reverse or forward, handles connections. A full proxy maintains two separate connections - one between itself and the client and one between itself and the destination server. A full proxy completely understands the protocols, and is itself an endpoint and an originator for the protocols. Full proxies are named because they completely proxy connections - incoming and outgoing. Because the full proxy is an actual protocol endpoint, it must fully implement the protocols as both a client and a server (a packet-based design does not). This also means the full proxy can have its own TCP connection behavior, such as buffering, retransmits, and TCP options. With a full proxy, each connection is unique; each can have its own TCP connection behavior. This means that a client connecting to the full proxy device would likely have different connection behavior than the full proxy might use for communicating with servers. Full proxies can look at incoming requests and outbound responses and can manipulate both if the solution allows it. Many reverse and forward proxies use a full proxy model today. There is no guarantee that a given solution is a full proxy, so you should always ask your solution provider if it is important to you that the solution is a full proxy.4.2KViews2likes12CommentsProgrammability in the Network: Canary Deployments
#devops The canary deployment pattern is another means of enabling continuous delivery. Deployment patterns (or as I like to call them of late, devops patterns) are good examples of how devops can put into place systems and tools that enable continuous delivery to be, well, continuous. The goal of these patterns is, for the most part, to make sure operations can smoothly move features, functions, releases or applications into production. We've previously looked at the Blue Green deployment pattern and today we're going to look at a variation: Canary deployments. Canary deployments are applicable when you're running a cluster of servers. In other words, you've got lots and lots of (probably active right now while you're considering pushing that next release) users. What you don't want is to do the traditional "we're sorry, we're down for maintenance, here's a picture of a funny squirrel to amuse you while you wait" maintenance page. You want to be able to roll out the new release without disruption. Yeah, that's quite the ask, isn't it? The Canary deployment pattern is an incremental upgrade methodology. First, the build is pushed to a small set of servers to which only a select group of users are directed. If that goes well, the release is pushed to a larger set of servers with a limited set of users. Finally, if that goes well, then the release is pushed out to all servers and all users. If issues occur at any stage, the release is halted - it goes no further. Hence the naming of the pattern - after the miner's canary, used because "its demise provided a warning of dangerous levels of toxic gases". The trick to implementing this pattern is two fold: first, being able to group the servers used in each step into discrete pools and second, the ability to direct specific sets of users to the appropriate pools. Both capabilities requires the ability to execute some logic to perform user-based load balancing. Nolio, in its first Devops Best Practices video, implements Canary deployments by manipulating the pools of servers at the load balancing tier, removing them to upgrade and then reinserting them for testing before moving onto the next phase. If your load balancing solution is programmable, there's no need to actually remove them as you can simply insert logic to remove them from being selected until they've been upgraded. You can also then insert the logic to determine which users are directed to which pool of servers. If the load balancing platform is really programmable, you can even extend that to determination to querying a database to determine user inclusion in certain groups, such as those you might use to perform AB testing. Such logic might base the decision on IP address (not the best option but an option) or later, when you're actually rolling out to a percentage of users you can write logic that randomly selects users based on location or their user name - like sharding, only in reverse - or pretty much anything you can think of. You can even split that further if you're rolling out an update to an API that's used by both mobile and traditional clients, to catch both or neither or specific types in an orderly fashion so you can test methodically - because you want to test methodically when you're using live users as test subjects. The beauty of this pattern is that allows continuous delivery. Users are never disrupted (if you do it right) and the upgrade occurs in a safely staged, incremental fashion. That enables you to back out quickly if necessary, because you do have a back button plan, right? Right?819Views1like1CommentWILS: Virtual Server versus Virtual IP Address
load balancing intermediaries have long used the terms “virtual server” and “virtual IP address”. With the widespread adoption of virtualization these terms have become even more confusing to the uninitiated. Here’s how load balancing and application delivery use the terminology. I often find it easiest to explain the difference between a “virtual server” and a “virtual IP address (VIP)” by walking through the flow of traffic as it is received from the client. When a client queries for “www.yourcompany.com” they get an IP address, of course. In many cases if the site is served by a load balancer or application delivery controller that IP address is a virtual IP address. That simply means the IP address is not tied to a specific host. It’s kind of floating out there, waiting for requests. It’s more like a taxi than a public bus in that a public bus has a predefined route from which it does not deviate. A taxi, however, can take you wherever you want within the confines of its territory. In the case of a virtual IP address that territory is the set of virtual servers and services offered by the organization. The client (the browser, probably) uses the virtual IP address to make a request to “www.yourcompany.com” for a particular resource such as a web application (HTTP) or to send an e-mail (SMTP). Using the VIP and a TCP port appropriate for the resource, the application delivery controller directs the request to a “virtual server”. The virtual server is also an abstraction. It doesn’t really “exist” anywhere but in the application delivery controller’s configuration. The virtual server determines – via myriad options – which pool of resources will best serve to meet the user’s request. That pool of resources contains “nodes”, which ultimately map to one (or more) physical or virtual web/application servers (or mail servers, or X servers). A virtual IP address can represent multiple virtual servers and the correct mapping between them is generally accomplished by further delineating virtual servers by TCP destination port. So a single virtual IP address can point to a virtual “HTTP” server, a virtual “SMTP” server, a virtual “SSH” server, etc… Each virtual “X” server is a separate instantiation, all essentially listening on the same virtual IP address. It is also true, however, that a single virtual server can be represented by multiple virtual IP addresses. So “www1” and “www2” may represent different virtual IP addresses, but they might both use the same virtual server. This allows an application delivery controller to make routing decisions based on the host name, so “images.yourcompany.com” and “content.yourcompany.com” might resolve to the same virtual IP address and the same virtual server, but the “pool” of resources to which requests for images is directed will be different than the “pool” of resources to which content is directed. This allows for greater flexibility in architecture and scalability of resources at the content-type and application level rather than at the server level. WILS: Write It Like Seth. Seth Godin always gets his point across with brevity and wit. WILS is an ATTEMPT TO BE concise about application delivery TOPICS AND just get straight to the point. NO DILLY DALLYING AROUND. Server Virtualization versus Server Virtualization Architects Need to Better Leverage Virtualization Using "X-Forwarded-For" in Apache or PHP SNAT Translation Overflow WILS: Client IP or Not Client IP, SNAT is the Question WILS: Why Does Load Balancing Improve Application Performance? WILS: The Concise Guide to *-Load Balancing WILS: Network Load Balancing versus Application Load Balancing All WILS Topics on DevCentral If Load Balancers Are Dead Why Do We Keep Talking About Them?2.8KViews1like1Comment