announcement
218 Topics- F5 AppWorld 2026 Registration - early bird pricing.Join us March 10–12 at Fontainebleau Las Vegas and Meet the Moment at F5 AppWorld 2026. Connect with your community and explore how the F5 Application Delivery and Security Platform gives you control without compromise. Over three days you will experience inspiring keynotes, learn new approaches in breakouts, deepen your skills in hands-on labs, and connect with peers, F5 leaders, and partners. Register early and save: Conference pass: $499 Conference pass + F5 Academy labs: $899 Team pass: 4 for the price of 3 Take advantage of early bird pricing and register today! We look forward to seeing you in Vegas. Your DevCentral Team. --- ** Early bird pricing expires Feb 13, 2026.274Views4likes3Comments
- Introducing F5 WAF for NGINX with Intuitive GUI in NGINX One Console and NGINX Instance ManagerF5 WAF for NGINX (formerly NGINX App Protect WAF) now has an intuitive, GUI-based policy management experience within NGINX One Console and NGINX Instance Manager. It’s easier than ever to streamline security operations and reduce false positives and false negatives. Important Changes! This product release unites the latest version of F5 WAF for NGINX with NGINX One Console and NGINX Instance Manager to deliver major enhancements empowering SecOps teams. New and enhanced capabilities for F5 WAF for NGINX users include: A GUI for WAF Policy Management A modern, wizard-driven UI debuts in NGINX One Console and NGINX Instance Manager, for F5 WAF for NGINX. The initial phases of the new UI focus on foundational tasks for SecOps workflows, which will be followed by subsequent phases supporting additional advanced capabilities to mitigate false positives and false negatives. The current release delivers GUI based attack mitigation workflows that provide: Enabling or disabling signature sets for fast but broad categories of attacks Enabling or disabling signatures for a specific attack type Enabling or disabling signatures and defining actions for a specific user-defined URL, cookie, or parameter A New Name NGINX App Protect is now F5 WAF for NGINX and F5 DoS for NGINX. This is the first product rename to align with F5’s unified platform, enabling security for any app and API, anywhere. Any prior or historical articles, blogs, and other materials will remain unchanged. While the name has changed, all product functionality, code, and configurations remain intact, ensuring a seamless experience for customers. Only branding changes – from NGINX App Protect to F5 WAF for NGINX – have been made to documentation and materials to ensure that no breaking changes have been implemented. Existing workflows remain fully compatible. Upgrading also remains seamless. Users may move from v4.x (e.g. v4.16) to F5 WAF for NGINX v5.9, just as in prior version upgrades. Version Alignment Both packaged and containerized versions of F5 WAF for NGINX now share a single version label for this release: v5.9. This eliminates confusion, simplifies deployments, and ensures consistency across form factors. Additional information is available in the F5 WAF for NGINX 5.9 release notes. Documentation Update F5 WAF for NGINX and F5 DoS for NGINX now feature a completely redesigned documentation experience. Monolithic configuration pages have been replaced with streamlined, logically organized sections, making content easier to navigate, consume, and contribute for faster adoption and collaboration. For more details, refer to the F5 WAF for NGINX docs. Operations Simplification in Kubernetes (EA) This is an ‘Early Availability’ feature for limited customers in the F5 WAF for NGINX v5.9 release for NGINX Plus. This capability removes the need for custom policy compilation workflows. Users can now update policies directly – fully Kubernetes-native with support for JSON, YAML, and Bundle formats, streamlining security operations for modern environments. In future releases, this capability will also extend to NGINX Ingress Controller. For more details, refer to the NGINX docs. Please note that F5 WAF for NGINX v5.9 is a standard release, and upgrading to this version is at the customer’s option. Also, signature updates will continue for NGINX App Protect WAF v4.x customers under the current policy. GUI Eases Implementing Best Practices for WAF Workflows Start in Detection Mode Deploy signature sets in Transparent mode initially to analyze traffic patterns without blocking legitimate requests. This approach allows teams to identify false positives before switching to Block mode. Granular Exception Strategy Rather than broad exclusions that weaken security, implement targeted exceptions that address specific false positive scenarios while maintaining protection elsewhere. Continuous Monitoring and Adjustment Security teams should regularly review WAF logs to identify new false-positive patterns and adjust signature sets accordingly. WAF signatures are updated regularly, requiring ongoing tuning. Enable or disable signature sets for fast but broad categories of attacks. Enabling or disabling signatures for a specific attack type Enabling or disabling signatures and defining actions for a specific user-defined URL, cookie, or parameter The key to effective WAF deployment lies in precise tuning through signature sets and targeted exceptions, ensuring robust protection without disrupting business operations. Releases F5 WAF for NGINX v5.9 (formerly NGINX App Protect WAF) released in September 2025. The complete changelog details are here. F5 DoS for NGINX (formerly NGINX App Protect DoS) documentation update is here. There has been no new release of this package. NGINX One Console, with the GUI supporting the new workflows, will be released in early October 2025. Find all the latest additions to the NGINX One Console in the changelog here. NGINX Instance Manager with the GUI supporting the new workflows will be coming soon (November 2025).701Views3likes0Comments
- How I did it - "High-Performance S3 Load Balancing of Dell ObjectScale with F5 BIG-IP"As AI and data-driven workloads grow, enterprises need scalable, high-performance, and resilient storage. Dell ObjectScale delivers with its cloud-native, S3-compatible design, ideal for AI/ML and analytics. F5 BIG-IP LTM and DNS enhance ObjectScale by providing intelligent traffic management and global load balancing—ensuring consistent performance and availability across distributed environments. This article introduces Dell ObjectScale and its integration with F5 solutions for advanced use cases.1.4KViews6likes1Comment
- Secure Extranet with Equinix Fabric and F5 Distributed CloudWhy: The Challenge of Building a Secure Extranet Establishing a secure extranet that spans multiple clouds, partners, and enterprise locations is inherently complex. Organizations face several persistent challenges: Technology Fragmentation: Different clouds, vendors, and networking stacks introduce inconsistency and integration friction. Endpoint Proliferation: Each new partner or cloud region adds more endpoints to secure and manage. Configuration Drift: Manual or siloed configurations across environments increase the risk of misalignment and security gaps. Security Exposure: Without centralized control, enforcing consistent policies across environments is difficult, increasing the attack surface. Operational Overhead: Managing disparate systems and connections strains NetOps, DevOps, and SecOps teams. These challenges make it difficult to scale securely and efficiently, especially when onboarding new partners or deploying applications globally. What: A Unified, Secure, and Scalable Extranet Solution The joint solution from F5 and Equinix addresses these challenges by combining: F5® Distributed Cloud Customer Edge (CE): A virtualized network and security node deployed via Equinix Network Edge. Equinix Fabric®: A software-defined interconnection platform that provides private, high-performance connectivity between clouds, partners, and enterprise locations. Together, they create a strategic point of control at the edge of your enterprise network. This enables secure, scalable, and policy-driven connectivity across hybrid and multi-cloud environments. This solution: Simplifies deployment by eliminating physical infrastructure dependencies. Centralizes policy enforcement across all connected environments. Accelerates partner onboarding with pre-integrated, software-defined connectors. Reduces risk by isolating traffic and enforcing consistent security policies. How: Architectural Overview At the heart of the architecture is the F5 Distributed Cloud CE, deployed as a virtual network function (VNF) on Equinix Network Edge. This CE: Acts as a gateway node for each location (cloud, data center, or partner site). Connects to other CEs via F5’s global private backbone, forming a secure service mesh. Integrates with F5 Distributed Cloud Console for centralized orchestration, visibility, and policy management. The CE node(s) are interconnected to partners, vendors, etc. using Equinix Fabric, which provides: Private, low-latency interconnects to major cloud providers (AWS, Azure, GCP, OCI). Software-defined routing via Fabric Cloud Router. Tier-1 internet access for hybrid workloads. This architecture enables a hub-and-spoke or full-mesh extranet topology, depending on business needs. Key Tenets of the Solution Strategic Point of Control The CE becomes the enforcement point for traffic inspection, segmentation, and policy enforcement—across all clouds and partners. Unified Management F5 Distributed Cloud Console provides a single pane of glass for managing networking, security, and application delivery policies. Zero-Trust Connectivity Built-in support for mutual TLS, IPsec, and SSL tunnels ensures encrypted, authenticated communication between nodes. Rapid Partner Onboarding Equinix’s Fabric and F5 CE connectors allow new partners to be onboarded in minutes, not weeks. Operational Efficiency Automation hooks (GitOps, Terraform, APIs) reduce manual effort and configuration drift. Private interconnects and regional CE deployments help meet regulatory requirements. Additional Links F5 and Equinix Partnership The Business Partner Exchange - An F5 Distributed Cloud Services Demonstration Equinix Fabric Overview Additional Equinix and F5 partner information180Views0likes0Comments
- Introducing the F5 Threat Report: Strategic Threat Intelligence with Real-Time Industry and Technology TrendsChallenge widespread assumptions from traditional cybersecurity tools with the latest threat landscape insights including threat movement, threat life-cycles, and more.407Views0likes0Comments
- Announcing Unovis 1.6Version 1.6 of Unovis is here! This is one of our most feature-packed releases yet. It brings exciting new components, enhanced graph functionality, improved axis customization, and numerous quality of-life improvements. To see the full list of updates, please look at our release note on github153Views4likes0Comments
- Redesigned docs.nginx.com is now liveWe're excited to announce the release of the newly-redesigned F5 NGINX documentation website, docs.nginx.com. The NGINX Documentation website hosts content for F5's enterprise NGINX offerings, including F5 NGINX One and F5 NGINX Plus. This release includes a fresh, minimalist design and a complete overhaul of our Hugo theme. We have also added redesigned product landing pages, a new sidebar, and a product selector to make it easier to navigate the site. We will continue to iterate on the site, following a continuous delivery model to release improvements as we complete them. We would love your feedback on our updated design, as well as on our ongoing site improvements. You can share your thoughts in the comments here or via the NGINX community forum, where this announcement is cross-posted. Thanks are due to the F5 DocOps team for their tireless efforts on this project.68Views2likes0Comments
- F5 NGINX Plus R35 Release Now AvailableWe’re excited to announce the availability of F5 NGINX Plus Release 35 (R35). Based on NGINX Open Source, NGINX Plus is the only all-in-one software web server, load balancer, reverse proxy, content cache, and API gateway. New and enhanced features in NGINX Plus R35 include: ACME protocol support: This release introduces native support for Automated Certificate Management Environment (ACME) protocol in NGINX Plus. The ACME protocol automates SSL/TLS certificate lifecycle management by enabling direct communication between clients and certificate authorities for issuance, installation, revocation, and replacement of SSL certificates. Automatic JWT Renewal and Update: This capability simplifies the NGINX Plus renewal experience by automating the process of updating the license JWT for F5 NGINX instances communicating directly with the F5 licensing endpoint for license reporting. Native OIDC Enhancements: This release includes additional enhancements to the Native OpenID connect module, adding support for Relying party (RP) initiated Logout and UserInfo endpoint for streamlining authentication workflows. Support for Early Hints: NGINX Plus R35 introduces support for Early Hints (HTTP 103), which optimizes website performance by allowing browsers to preload resources before the final server response, reducing latency and accelerating content display. QUIC – CUBIC Congestion Control: With R35, we have extended support for congestion algorithms in our HTTP3/QUIC implementation to also support CUBIC which provides better bandwidth utilization resulting in quicker load times and faster downloads. NGINX Javascript QuickJS - Full ES2023 support: With this NGINX Plus release, we now support full ES2023 JavaScript specification for QuickJS runtime for your custom NGINX scripting and extensibility needs using NGINX JavaScript. Changes to Platform Support NGINX Plus R35 introduces the following updates to the NGINX Plus technical specification. Added Platforms: Support for the following platforms has been added with this release Alpine Linux 3.22 RHEL 10 Removed Platforms: Support for the following platforms has been removed starting this release. Alpine Linux 3.18 – Reached End of Support in May 2025 Ubuntu 20.04 (LTS) – Reached End of support in May 2025 Deprecated Platforms: Alpine Linux 3.19 Note: For SUSE Linux Enterprise Server (SLES) 15, SP6 is now the required service pack version. The older service packs have been EOL’ed by the vendor and are no longer supported. New Features In Details ACME Protocol Support The ACME protocol (Automated Certificate Management Environment) is a communications protocol primarily designed to automate the process of issuing, validating, renewing, and revoking digital security certificates (e.g., TLS/SSL certificates). It allows clients to interact with a Certificate Authority (CA) without requiring manual intervention, simplifying the deployment of secure websites and other services that rely on HTTPS. With the NGINX Plus R35 release, we are pleased to announce the preview release of native ACME support in NGINX. ACME support is available as a Rust-based dynamic module for both NGINX Open Source, as well as enterprise F5 NGINX One customers using NGINX Plus. Native ACME support greatly simplifies and automates the process of obtaining and renewing SSL/TLS certificates. There’s no need to track certificate expiration dates and manually update or review configs each time an update is needed. With this support, NGINX can now directly communicate with ACME-compatible Certificate Authorities (CAs) like Let's Encrypt to handle certificate management without requiring external plugins like certbot, cert-manager, etc or ongoing manual intervention. This reduces complexity, minimizes operational overhead, and streamlines the deployment of encrypted HTTPS for websites and applications while also making the certificate management process more secure and less error prone. The implementation introduces a new module ngx_http_acme_module providing built-in directives for requesting, installing, and renewing certificates directly from NGINX configuration. The current implementation supports HTTP-01 challenge with support for TLS-ALPN and DNS-01 challenges planned in future. For a detailed overview of the implementation and the value it brings, refer the ACME blog post. To get step by step instructions on how to configure ACME in your environment, refer to NGINX docs. Automatic JWT Renewal and Update This feature enables the automatic update of the JWT license for customers reporting their usage directly to the F5 licensing endpoint (product.connect.nginx.com) post successful renewal of the subscription. The feature applies to subscriptions nearing expiration (within 30 days) as well as subscriptions that have expired, but remain within the 90-day grace period. Here is how this feature works: Starting 30 days prior to JWT license expiration, NGINX Plus will notify the licensing endpoint server of JWT license expiration as part of the automatic usage reporting process. The licensing endpoint server will continually check for a renewed NGINX One subscription with F5 CRM system. Once the subscription is successfully renewed, the F5 licensing endpoint server will send the updated JWT to corresponding NGINX Plus instance. NGINX Plus instance in turn will automatically deploy the renewed JWT license to the location based on your existing configuration without the need for any NGINX reload or service restart. Note: The renewed JWT file received from F5 is named nginx-mgmt-license and is located at the state_path location on your NGINX instance. For more details, refer to NGINX docs. Native OpenID Connect Module Enhancements The NGINX Plus R34 release introduced native support for OpenID Connect (OIDC) authentication. Continuing the momentum, we are excited to add support for OIDC Relying Party (RP) Initiated Logout along with support for retrieving claims via the OIDC UserInfo endpoint in this release. Relying Party (RP) Initiated Logout RP-Initiated Logout is a method used in federated authentication systems (e.g., systems using OpenID Connect (OIDC) or Security Assertion Markup Language (SAML)) to allow a user to log out of an application (called the relying party) and propagate the logout request to other services in the authentication ecosystem, such as the identity provider (IdP) and other sessions tied to the user. This facilitates session synchronization and clean-up across multiple applications or environments. The RP-Initiated Logout support in NGINX OIDC native module helps provide a seamless user experience by enhancing the consistency of authentication and logout workflows, particularly in Single Sign-On (SSO) environments. It significantly helps improve security by ensuring user sessions are terminated securely thereby reducing the risk of unauthorized access. It also simplifies the development processes by minimizing the need for custom coding and promoting adherence to best practices. Additionally, it strengthens user privacy and supports compliance efforts enabling users to easily terminate sessions, thereby reducing the exposure from lingering session. The implementation involves the client (browser) initiating a logout by sending a request to the relying party's (NGINX) logout endpoint. NGINX(RP) adds additional parameters to the request and redirects it to the IdP, which terminates the associated user session and redirects the client to the specified post_logout_uri. Finally, NGINX as the relying party presents a post-logout confirmation page, signaling the completion of the logout process and ensuring session termination across both the relying party and the identity provider. UserInfo Retrieval Support The OIDC UserInfo endpoint is used by applications to retrieve profile information about the authenticated Identity. Applications can use this endpoint to retrieve profile information, preferences and other user-specific information to ensure a consistent user management process. The support for UserInfo endpoint in the native OIDC module provides a standardized mechanism to fetch user claims from Identity Providers (IdPs) helping simplify the authentication workflows and reducing overall system complexity. Having a standard mechanism also helps define and adopt development best practices across client applications for retrieving user claims offering tremendous value to developers, administrators, and end-users. The implementation enables the RP (nginx) to call an identity provider's OIDC UserInfo endpoint with the access token (Authorization: Bearer) and obtain scope-dependent End-user claims (e.g., profile, email, scope, address). This provides the standard, configuration-driven mechanism for claim retrieval across client applications and reduces integration complexity. Several new directives (logout_uri, post_logout_uri, logout_token_hint, and userinfo) have been added to the ngx_http_oidc_module to support both these features. Refer to our technical blog on how NGINX Plus R35 offers frictionless logout and UserInfo retrieval support as part of the native OIDC implementation for a comprehensive overview of both of these features and how they work under the hood. For instructions on how to configure the native OIDC module for various identity providers, refer the NGINX deployment guide. Early Hints Support Early Hints (RFC 8297) is a HTTP status code to improve website performance by allowing the server to send preliminary hints to the client before the final response is ready. Specifically, the server sends a 103 status code with headers indicating which resources (like CSS, JavaScript, images) the client can pre-fetch while the server is still working on generating the full response. Majority of the web browsers including Chrome, Safari and Edge support it today. A new NGINX directive early_hints has been added to specify the conditions under which backends can send Early Hints to the client. NGINX will parse the Early Hints from the backend and send them to the client. The following example shows how to proxy Early Hints for HTTP/2 and HTTP/3 clients and disable them for HTTP/1.1 early_hints $http2$http3; proxy_pass http://bar.example.com; For more details, refer NGINX docs and a detailed blog on Early Hints support in NGINX. QUIC – Support for CUBIC Congestion Control Algorithm CUBIC is a congestion control algorithm designed to optimize internet performance. It is widely used and well-tested in TCP implementations and excels in high-bandwidth and high-delay networks by efficiently managing data transmission ensuring faster speeds, rapid recovery from congestion, and reduced latency. Its adaptability to various network conditions and fair resource allocation makes it a reliable choice for delivering a smooth and responsive online experience and enhance overall user satisfaction. We announced support for CUBIC congestion algorithm in NGINX open source mainline version 1.27.4. All the bug fixes and enhancements since then are being merged into NGINX Plus R35. For a detailed overview of the implementation, refer to our blog on the topic. NGINX Javascript QuickJS - Full ES2023 support We introduced preview support for QuickJS runtime in NGINX JavaScript(njs) version 0.8.6 in the NGINX Plus R33 release. We have been quietly focused on this initiative since and are pleased to announce full ES2023 JavaScript specification support in NGINX JavaScript(njs) version 0.9.1 with NGINX Plus R35 release. With full ES2023 specification support, you can now use the latest JavaScript features that modern developers expect as standard to extend NGINX capabilities using njs. Refer to this detailed blog for a comprehensive overview of our QuickJS implementation, the motivation behind QuickJS runtime support and where we are headed with NGINX JavaScript. For specific details on how you can leverage QuickJS in your njs scripts, please refer to our documentation. Other Enhancements and Bug Fixes Variable based Access Control Support To enable robust access control using identity claims, R34 and earlier versions required a workaround involving the auth_jwt_require directive. This involved reprocessing the ID token with the auth_jwt module to manage access based on claims. This approach introduced configuration complexity and performance overhead. With R35, NGINX simplifies this process through the auth_require directive, which allows direct use of claims for resource-based access control without relying on auth_jwt. This directive is part of a new module ngx_http_auth_require_module added in this release. For ex, the following NGINX OIDC configuration maps the role claim from the id_token to $admin_role variable and sets it to 1 if the user’s role is “admin”. The /location block then uses auth_require $admin_role to restrict access, allowing only the users with admin role to proceed. http { oidc_provider my_idp { ... } map $oidc_claim_role $admin_role { "admin" 1; } server { auth_oidc my_idp; location /admin { auth_require $admin_role; } } } Though the directive is not exclusive to OIDC, when paired with auth_oidc, it provides a clean and declarative Role-Based Access Control (RBAC) mechanism within the server configuration. For example, you can easily configure access so only admins reach the /admin location, while either admins or users with specific permissions access other locations. The result is streamlined, efficient, and practical access management directly in NGINX. Note that the new auth_require directive does not replace auth_jwt_require as the two serve distinct purposes. While auth_jwt_require is an integral part of JWT validation in the JWT module focusing on headers and claims checks, auth_require operates in a separate ACCESS phase for access control. Deprecating auth_jwt_require would reduce flexibility, particularly in "satisfy" modes of operation, and complicate configurations. Additionally, auth_jwt_require plays a critical role in initializing JWT-related variables, enabling their use in subrequests. This initialization, crucial for JWE claims, cannot be done via REWRITE module directives as JWE claims are not available before JWT decryption. Support for JWS RSASSA-PSS algorithms: RSASSA-PSS algorithms are used for verifying the signatures of JSON Web Tokens (JWTs) to ensure their authenticity and integrity. In NGINX, these algorithms are typically employed via the auth_jwt_module when validating JWTs signed using RSASSA-PSS. We are adding support for following algorithms as specified in RFC 7518 (Section 3.5): PS256 PS384 PS512 Improved Node Outage Detection and Logging This release also introduces improvements in the timeout handling for zone_sync connections enabling faster detection of offline nodes and reducing counter accumulation risks. This improvement is aimed at improving synchronization of nodes in a cluster and early detection of failures improving system’s overall performance and reliability. Additional heuristics are added to detect blocked workers to proactively address prolonged event loop times. License API Updates NGINX license API endpoint now provides additional information. The “uuid” parameter in the license information is now available via the API endpoint. Changes Inherited from NGINX Open Source NGINX Plus R35 is based on NGINX 1.29.0 mainline release and inherits all functional changes, features, and bug fixes made since NGINX Plus R34 was released (which was based on 1.27.4 mainline release). Features: Early Hints support - support for response code 103 from proxy and gRPC backends; CUBIC congestion control algorithm support in QUIC connections. Loading of secret keys from hardware tokens with OpenSSL provider. Support for the "so_keepalive" parameter of the "listen" directive on macOS. Changes: The logging level of SSL errors in a QUIC handshake has been changed from "error" to "crit" for critical errors, and to "info" for the rest; the logging level of unsupported QUIC transport parameters has been lowered from "info" to "debug". Bug Fixes: nginx could not be built by gcc 15 if ngx_http_v2_module or ngx_http_v3_module modules were used. nginx might not be built by gcc 14 or newer with -O3 -flto optimization if ngx_http_v3_module was used. In the "grpc_ssl_password_file", "proxy_ssl_password_file", and "uwsgi_ssl_password_file" directives when loading SSL certificates and encrypted keys from variables; the bug had appeared in 1.23.1. In the $ssl_curve and $ssl_curves variables when using pluggable curves in OpenSSL. nginx could not be built with musl libc. Bugfixes and performance improvements in HTTP/3. Security: (CVE-2025-53859) SMTP Authentication process memory over-read: This vulnerability in the NGINX ngx_mail_smtp_module may allow an unauthenticated attacker to trigger buffer over-read resulting in worker process memory disclosure to the authentication server. For the full list of new changes, features, bug fixes, and workarounds inherited from recent releases, see the NGINX changes . Changes to the NGINX Javascript Module NGINX Plus R35 incorporates changes from the NGINX JavaScript (njs) module version 0.9.1. The following is a list of notable changes in njs since 0.8.9 (which was the version shipped with NGINX Plus R34). Features: Added support for the QuickJS-NG library. Added support for WebCrypto API, FetchAPI, TextEncoder and TextDecoder, querystring module, crypto module and xml module for the QuickJS engine. Added state file for a shared dictionary. Added ECDH support for WebCrypto. Added support for reading r.requestText or r.requestBuffer from a temporary file. Improvements: Performance improvements due to refactored handling of built-in strings, symbols, and small integers Multiple memory usage improvements improved reporting of unhandled promise rejections. Bug Fixes: Fixed segfault in njs_property_query(). The issue was introduced in b28e50b1 (0.9.0). Fixed Function constructor template injection. Fixed GCC compilation with O3 optimization level. Fixed constant is too large for 'long' warning on MIPS -mabi=n32. Fixed compilation with GCC 4.1. Fixed %TypedArray%.from() with the buffer is detached by the mapper. Fixed %TypedArray%.prototype.slice() with overlapping buffers. Fixed handling of detached buffers for typed arrays. Fixed frame saving for async functions with closures. Fixed RegExp compilation of patterns with escaped '[' characters. Fixed handling of undefined values of a captured group in RegExp.prototype[Symbol.split](). Fixed GCC 15 build error with -Wunterminated-string-initialization. Fixed name corruption in variables and headers processing. Fixed incr() method of a shared dictionary with an empty init argument for the QuickJS engine. Bugfix: accepting response headers with underscore characters in Fetch API. Fixed Buffer.concat() with a single argument in QuickJS. Bugfix: added missed syntax error for await in template literal. Fixed non-NULL terminated strings formatting in exceptions for the QuickJS engine. Fixed compatibility with recent change in QuickJS and QuickJS-NG. Fixed serializeToString(). Previously, serializeToString() was exclusiveC14n() which returned a string instead of Buffer. According to the published documentation, it should be c14n() For a comprehensive list of all the features, changes, and bug fixes, see the njs Changelog. F5 NGINX in F5’s Application Delivery & Security Platform NGINX One is part of F5’s Application Delivery & Security Platform. It helps organizations deliver, improve, and secure new applications and APIs. This platform is a unified solution designed to ensure reliable performance, robust security, and seamless scalability for applications deployed across cloud, hybrid, and edge architectures. NGINX One is the all-in-one, subscription-based package that unifies all of NGINX’s capabilities. NGINX One brings together the features of NGINX Plus, F5 NGINX App Protect, and NGINX Kubernetes and management solutions into a single, easy-to-consume package. NGINX Plus, a key component of NGINX One, adds features to open-source NGINX that are designed for enterprise-grade performance, scalability, and security. Ready to try the new release? Follow this guide for more information on installing and deploying NGINX Plus.1KViews1like0Comments