announcement
349 TopicsCisco TACACS+ Config on ISE LTM Pair
I'm trying to add TACACS+ configuration to my ISE LTMs (v17.1.3). We use Active Directory for authentication. The problem is when I try to create the profile, the "type" dropdown does not show "TACACS+". APM is not provisioned either, not if that is needed. I provisioned it on our lab, but no help.65Views0likes8CommentsAgentic AI with F5 BIG-IP v21 using Model Context Protocoland OpenShift
Introduction to Agentic AI Agentic AI is the capability of extending the Large Language Models (LLM) by means of adding tools. This allows the LLMs to interoperate with functionalities external to the LLM. Examples of these are the capability to search a flight or to push code into github. Agentic AI operates proactively, minimising human intervention and making decisions and adapting to perform complex tasks by using tools, data, and the Internet. This is done by basically giving to the LLM the knowledge of the APIs of github or the flight agency, then the reasoning of the LLM makes use of these APIs. The external (to the LLM) functionality can be run in the local computer or in network MCP servers. This article focuses in network MCP servers, which fits in the F5 AI Reference Architecture components and the insertion point indicated in green of the shown next: Introduction to Model Context Protocol Model Context Protocol (MCP) is a universal connector between LLMs and tools. Without MCP, it is needed that the LLM is programmed to support the different APIs of the different tools. This is not a scalable model because it requires a lot of effort to add all tools for a given LLM and for a tool to support several LLMs. Instead, when using MCP, the LLM (or AI application) and the tool only need to support MCP. Without further coding, the LLM model automatically is able to use any tool that exposes its functionalities through MCP. This is exhibit in the following figure: MCP example workflow In the next diagram it is exposed the basic MCP workflow using the LibreChat AI application as example. The flow is as follows: The AI application queries agents (MCP servers) which tools they provide. The agents return a list of the tools, with a description and parameters required. When the AI application makes a request to the AI model it includes in the request information about the tools available. When the AI model finds out it doesn´t have built-in what it is required to fulfil the request, it makes use of the tools. The tools are accessed through the AI application. The AI model composes a result with its local knowledge and the results from the tools. Out of the workflow above, the most interesting is step 1 which is used to retrieve the information required for the AI model to use the tools. Using the mcpLogger iRule provided in this article later on, we can see the MCP messages exchanged. Step 1a: { "method": "tools/list", "jsonrpc": "2.0", "id": 2 } Step 1b: { "jsonrpc": "2.0", "id": 2, "result": { "tools": [ { "name": "airport_search", "description": "Search for airport codes by name or city.\n\nArgs:\n query: The search term (city name, airport name, or partial code)\n\nReturns:\n List of matching airports with their codes", "inputSchema": { "properties": { "query": { "type": "string" } }, "required": [ "query" ], "type": "object" }, "outputSchema": { "properties": { "result": { "type": "string" } }, "required": [ "result" ], "type": "object", "x-fastmcp-wrap-result": 1 }, "_meta": { "_fastmcp": { "tags": [] } } } ] } } Note from the above that the AI model only requires a description of the tool in human language and a formal declaration of the input and output parameters. That´s all!. The reasoning of the AI model is what will make good use of the API described through MCP. The AI models will interpret even the error messages. For example, if the AI model miss-interprets the input parameters (typically because of wrong descriptor of the tool), the AI model might correct itself if the error message is descriptive enough and call the tool again with the right parameters. Of course, the MCP protocol is more than this but the above is necessary to understand the basis of how tools are used by LLM and how the magic works. F5 BIG-IP and MCP BIG-IP v21 introduces support for MCP, which is based on JSON-RPC. MCP protocol had several iterations. For IP based communication, initially the transport of the JSON-RPC messages used HTTP+SSE transport (now considered legacy) but this has been completely replaced by Streamable HTTP transport. This later still uses SSE when streaming multiple server messages. Regardless of the MCP version, in the F5 BIG-IP it is just needed to enable the JSON and SSE profiles in the Virtual Server for handling MCP. This is shown next: By enabling these profiles we automatically get basic protocol validation but more relevantly, we obtain the ability to handle MCP messages with JSON and SSE oriented events and functions. These allows parsing and manipulation of MCP messages but also the capability of doing traffic management (load balancing, rate limiting, etc...). Next it can be seen the parameters available for these profiles, which allow to limit the size of the various parts of the messages. Defaults are fine for most of the cases: Check the next links for information on iRules events and commands available for the JSON and SSE protocols. MCP and persistence Session persistence is optional in MCP but when the server indicates an Mcp-Session-Id it is mandatory for the client. MCP servers require persistence when they keep a context (state) for the MCP dialog. This means that the F5 BIG-IP must support handling this Mcp-Session-Id as well and it does by using UIE (Universal) persistence with this header. A sample iRule mcpPersistence is provided in the gitHub repository. Demo and gitHub repository The video below demonstrate 3 functionalities using the BIG-IP MCP functionalities, these are: Using MCP persistence Getting visibility of MCP traffic by logging remotely the JSON-RPC payloads of the request and response messages using High Speed Logging. Controlling which tools are allowed or blocked, and logging the allowed/block actions with High Speed Logging. These functionalities are implemented with iRules available in this GitHub repository and deployed in Red Hat OpenShift using the Container Ingress Services (CIS) controller which automates the deployment of the configuration using Kubernetes resources. The overall setup is shown next: In the next embedded video we can see how this is deployed and used. Conclusion and next steps F5 BIG-IP v21 introduces support for MCP protocol and thanks to F5 CIS these setups can be automated in your OpenShift cluster using the Kubernetes API. The possibilities of Agentic AI are infinite, thanks to MCP it is possible to extend the LLM models to use any tool easily. The tools can be used to query or execute actions. I suggest to take a look to repositories of MCP servers and realize the endless possibilities of Agentic AI: https://mcpservers.org/ https://www.pulsemcp.com/servers https://mcpmarket.com/server https://mcp.so/ https://github.com/punkpeye/awesome-mcp-servers
57Views1like0CommentsMAC users unable to access Internet when on Netskope
Hi Team, We recently upgraded our F5 APM Clients from 7245 to 7261 . Post that some users are unable to access generic Internet websites ( which are not tunneled ) like google, Github and much more. They just get the error as connection closed in browser. Anyone here faced the same issue and if yes any suggestions. Some Difference which we noticed were that some Non working users had Netskope installed in their system79Views0likes3CommentsWhat's new in BIG-IP v21.0?
Introduction In November of 2025 F5 released the latest version of BIG-IP software, v21.0. This release is packed with fixes and new features that enhance the F5 Application Delivery and Security Platform (ADSP). These changes complement the Delivery, Security and Deployment aspects of the ADSP. New SSL Orchestrator Features SNI Preservation SNI (Server Name Indication) Preservation is now supported for Inbound Gateway Mode. This preserves the client’s original SNI information as traffic passes through the reverse proxy, allowing backend TLS servers to access and use this information. This enables accurate application routing and supports security workflows like threat detection and compliance enforcement. Previous software versions required custom iRules to enable this functionality. Note: SNI preservation is enabled by default. However, if you have existing Inbound Gateway Topologies, you must redeploy them for the change to take effect. iRule Control for Service Entry and Return Previously, iRules were only available on the entry (ingress) side, limiting customization to traffic entering the Inspection Service. iRule control is now extended to the return-side traffic of Inspection Services. You can now apply iRules on both sides of an Inspection Service (L2, L3, HTTP). This enhancement provides full control over traffic entering and leaving the Inspection Service, enabling more flexible, powerful, and fine-grained traffic handling. The Services page will now include configuration for iRules on service entry and iRules on service return. A typical use-case for this feature is what we call Header Enrichment. In this case, iRules are used to add headers to the payload before sending it to the Inspection Service. The headers could contain the authenticated username/group membership of the person who initiated the connection. This information can be useful for Inspection Services for either logging, policy enforcement, or both. The benefit of this feature is that the authenticated username/group membership header can be removed from the payload on egress, preventing it from being leaked to origin servers. New Access Policy Manager (APM) Features Expanded Exclusion Support for Locked Client Mode Previously, APM-locked client mode allowed a maximum of 10 exclusions, preventing administrators from adding more than 10 destinations. This limitation has now been removed, and the exclusion list can contain more than 10 entries. OAuth Authorization Server Max Claims Data Support The max claim data size is set to 8kb by default, but a large claim size can lead to excessive memory consumption. You must allocate the right amount of memory dynamically as required based on claims configuration. New Features in BIG-IP v21.0.0 Control Plane Performance and Scalability Improvements The BIG-IP 21.0.0 release introduces significant improvements to the BIG-IP control plane, including better scalability and support for large-scale configurations (up to 1 million objects). This includes MCPD efficiency enhancements and eXtremeDB scale improvements. AI Data Delivery Optimize performance and simplify configuration with new S3 data storage integrations. Use cases include secure ingestion for fine-tuning and batch inference, high-throughput retrieval for RAG and embeddings generation, policy-driven model artifact distribution with observability, and controlled egress with consistent security and compliance. F5 BIG-IP optimizes and secures S3 data ingress and egress for AI workloads. Model Context Protocol (MCP) support for AI traffic Accelerate and scale AI workloads with support for MCP that enables seamless communication between AI models, applications, and data sources. This enhances performance, secures connections, and streamlines deployment for AI workloads. F5 BIG-IP optimizes and secures S3 data ingress and egress for AI workloads. Migrating BIG-IP from Entrust to Alternative Certificate Authorities Entrust is soon to be delisted as a certificate authority by many major browsers. Following a variety of compliance failures with industry standards in recent years, browsers like Google Chrome and Mozilla made their distrust for Entrust certificates public last year. As such, Entrust certificates issued on or after November 12, 2024, are deemed insecure by most browsers. Conclusion Upgrade your BIG-IP to version 21.0 today to take advantage of these fixes and new features that enhance the F5 Application Delivery and Security Platform (ADSP). These changes complement the Delivery, Security and Deployment aspects of the ADSP. Related Content SSL Orchestrator Release Notes BIG-IP Release Notes BLOG F5 BIG-IP v21.0: Control plane, AI data delivery and security enhancements Press Release F5 launches BIG-IP v21.0 Introduction to BIG-IP SSL Orchestrator197Views2likes0CommentsIllegal Request in Learning Suggestion for 200 OK response
Dears, I want to know the reason why this suggestion is showing an illegal request status even though response code is 200 OK. Is it because multiple violations triggered? The policy is in transparent mode and I am just verifying the suggestions. Can someone please provide an expert advise?90Views0likes5CommentsF5 NGINX Plus R36 Release Now Available
We’re thrilled to announce the availability of F5 NGINX Plus Release 36 (R36). NGINX Plus R36 adds advanced capabilities like an HTTP CONNECT forward proxy, richer OpenID Connect (OIDC) abilities, expanded ACME options, and new container images packaged with popular modules. In addition, NGINX Plus inherits all the latest capabilities from NGINX Open Source, the only all-in-one software web server, load balancer, reverse proxy, content cache, and API gateway. Here’s a summary of the most important updates in R36: HTTP CONNECT Forward Proxy NGINX Plus can now tunnel HTTP traffic via the HTTP CONNECT method, making it easy to centralize egress policies through a trusted NGINX Plus server. Advanced features enable capabilities that limit proxied traffic to specific origin clients, ports, or destination hosts and networks. Native OIDC Support for PKCE, Front-Channel Logout, and POST Client Authentication We’ve made additional enhancements to the popular OpenID Connect module by adding support for PKCE enforcement, the ability to log out of all applications a client was signed in to, and support for authenticating the OIDC client using the client_secret_post method. ACME Enhancements for Certificate Automation Certificate automation capabilities are more powerful than ever, as we continue to make improvements to the ACME (Automatic Certificate Management Environment) module. New features include support for the TLS-ALPN-01 challenge method, the ability to select a specific certificate chain, IP-based certificates, ACME profiles, and external account bindings. TLS Certificate Compression High-volume or high-latency connections can now benefit from a new capability that optimizes TLS handshakes by compressing certificates and associated CA chains. Container Images with Popular Modules Container images now include our most popular modules, making it even easier to deploy NGINX Plus in container environments. Alongside the previously included njs module, images now ship with the ACME, OpenTelemetry Tracing, and Prometheus Exporter modules. Key features inherited from NGINX Open Source include: Support for 0-RTT in QUIC Inheritance control for headers and trailers Support for OpenSSL 3.5 New Features in Detail HTTP CONNECT Forward Proxy NGINX Plus R36 adds native HTTP CONNECT support via a new ngx_http_tunnel_module that enables NGINX Plus to operate as a forward proxy for outbound HTTP/HTTPS traffic. You can restrict clients, ports, and hosts, as well as which networks are reachable via centralized egress policies. This new capability allows you to monitor outbound connections through one or more NGINX Plus instances instead of relying on separate proxy products or DIY open source projects. Why it matters Enforces consistent egress policies without introducing another proxy to your stack. Centralizes proxy rules and threat monitoring for outbound connections. Reduces the need for custom modules or sidecar proxies to tunnel outbound TLS. Who it helps Platform and network teams that must route all outbound traffic through a controlled proxy. Security teams that want a single place to enforce and audit egress rules. Operators consolidating L7 functions (inbound and outbound) on NGINX Plus. The following is a sample forward proxy configuration that filters ports, destination hosts and networks. Note the requirement to specify a DNS resolver. For simplicity, we've configured a popular, publicly available DNS. However, doing so is not recommended for certain production environments, due to access limitations and unpredictable availability. num_map $request_port $allowed_ports { 443 1; 8440-8445 1; } geo $upstream_last_addr $allowed_nets { 52.58.199.0/24 1; 3.125.197.172/24 1; } map $host $allowed_hosts { hostnames; nginx.org 1; *.nginx.org 1; } server { listen 3128; resolver 1.1.1.1; # unsafe tunnel_allow_upstream $allowed_nets $allowed_ports $allowed_hosts; tunnel_pass; } Native OpenID Connect Support for PKCE, Front-Channel Logout, and POST Client Authentication R36 extends the native OIDC features introduced in R34 with PKCE enforcement, front-channel logout, and support for authenticating clients via the client_secret_post method. PKCE for authorization code flow can now be auto-enabled for a configured Identity Provider when S256 is advertised for “code_challenge_methods_supported” in federated metadata. Alternatively, it can be explicitly toggled with a simple directive: pkce on; # force PKCE even if the OP does not advertise it pkce off; # disable PKCE even if the OP advertises S256 A new front-channel logout endpoint lets an Identity Provider trigger a browser-based sign-out of all applications that a client is signed in to. oidc_provider okta_app { issuer https://dev.okta.com/oauth2/default; client_id <client_id>; client_secret <client_secret>; logout_uri /logout; logout_token_hint on; frontchannel_logout_uri /front_logout; userinfo on; } Support for client_secret_post improves compatibility with identity providers that require POST-based client authentication per OpenID Connect Core 1.0. Why it matters Brings NGINX Plus in line with modern identity provider expectations that treat PKCE as a best practice for all authorization code flows. Enables reliable logout across multiple applications from a single identity provider trigger. Makes NGINX Plus easier to integrate with providers that insist on POST-based client authentication. Who it helps Identity access management and security teams standardizing on OIDC and PKCE. Application and API owners who need consistent login and logout behavior across many services. Architects integrating with cloud identity providers (Entra ID, Okta, etc.) that require specific OIDC patterns. ACME Enhancements for Certificate Automation Building on the ACME support shipped in our previous release, NGINX Plus R36 incorporates new features from the nginx acme project, including: TLS-ALPN-01 challenge support Selection of a specific certificate chain IP-based certificates ACME profiles External account bindings These capabilities align NGINX Plus with what is available in NGINX Open Source via the ngx_http_acme_module. Why it matters Lets you keep more of the certificate lifecycle inside NGINX instead of relying on external tooling. Makes it easier to comply with CA policies and organizational PKI standards. Supports more complex environments such as IP-only endpoints and specific chain requirements. Who it helps SRE and platform teams running large fleets that rely on automated certificate renewal. Security and PKI teams that need tighter control over certificate chains, profiles, and CA bindings. Operators who want to standardize on a single ACME implementation across NGINX Plus and NGINX Open Source. TLS Certificate Compression TLS certificate compression introduced in NGINX Open Source 1.29.1 is now available in NGINX Plus R36. The ssl_certificate_compression directive controls certificate compression during TLS handshakes, which remains off by default and must be explicitly enabled. Why it matters Reduces the size of TLS handshakes when certificate chains are large. Can optimize performance in high connection volume or high-latency environments. Offers incremental performance optimization without changing application behavior. Who it helps Performance-focused operators running services with many short-lived TLS connections. Teams supporting mobile or high-latency clients where every byte in the handshake matters. Operators who want to experiment with handshake optimizations while retaining control via explicit configuration. Container Images with Popular Modules Included Finally, NGINX Plus R36 introduces container images that bundle NGINX Plus with commonly requested first-party modules such as OpenTelemetry (OTel) Tracing, ACME, Prometheus Exporter, and NGINX JavaScript (njs). Options include images with or without F5 NGINX Agent and those running NGINX in privileged or unprivileged mode. Additionally, a slim NGINX Plus–only image will be made available for teams who prefer to build bespoke custom containers. Additional Enhancements Available in NGINX Plus R36 Upstream-specific request headers Dynamically assigned proxy_bind pools Changes Inherited from NGINX Open Source NGINX Plus R36 is based on the NGINX 1.29.3 mainline release and inherits all functional changes, features, and bug fixes made since NGINX Plus R35 was released (which was based on the 1.29.0 mainline release). For the full list of new changes, features, bug fixes, and workarounds inherited from recent releases, see the NGINX changes . Changes to Platform Support Added Platforms Support for the following platforms has been added: Debian 13 Rocky Linux 10 SUSE Linux Enterprise Server 16 Removed Platforms Support for the following platforms has been removed: Alpine Linux 3.19 – Reached End of Support in November 2025 Deprecated Platforms Support for the following platforms will be removed in a future release: Alpine Linux 3.20 Important Warning NGINX Plus is built on the latest minor release of each supported operating system platform. In many cases, the latest revisions of these operating systems are adapting their platforms to support OpenSSL 3.5 (e.g. RHEL 9.7 and 10.1). In these situations, NGINX Plus requires that OpenSSL 3.5.0 or later is installed for proper operation. F5 NGINX in F5’s Application Delivery & Security Platform NGINX One is part of F5’s Application Delivery & Security Platform. It helps organizations deliver, improve, and secure new applications and APIs. This platform is a unified solution designed to ensure reliable performance, robust security, and seamless scalability for applications deployed across cloud, hybrid, and edge architectures. NGINX One is the all-in-one, subscription-based package that unifies all of NGINX’s capabilities. NGINX One brings together the features of NGINX Plus, F5 NGINX App Protect, and NGINX Kubernetes and management solutions into a single, easy-to-consume package. NGINX Plus, a key component of NGINX One, adds features to NGINX Open Source that are designed for enterprise-grade performance, scalability, and security. Follow this guide for more information on installing and deploying NGINX Plus R36 or NGINX Open Source.490Views1like0CommentsExtend visibility - BIG-IP joins forces with CrowdStrike
Introduction The traditional focus in cybersecurity has prioritized endpoints like laptops and mobiles with EDR, as they are key entry points for intrusions. Modern threats target the full network infrastructure, like routers, ADCs, firewalls, servers, VMs, and cloud instances, as interconnected endpoints. All network software is a potential target in today’s sprawling attack surface. Summarizing some of those blind points below, Servers, including hardware, VMs, and cloud instances: Often under-monitored, rapid spin-up creates ephemeral risks for exfiltration and lateral movement. Network appliances: Enable traffic redirection, data sniffing, or backdoors, if compromised. Application delivery components: Vulnerable to session hijacking, code injection, or DDoS, due to high-traffic processing. Falcon sensor integration In this section, we go through download and installation steps, and observe how the solution works with detecting/blocking malicious packages. For more information, follow our KB articles, https://my.f5.com/manage/s/article/K000157015 Related content K000157015: Getting Started with Falcon sensor for BIG-IP K000156881: Install Falcon sensor for BIG-IP on the BIG-IP system K000157014: F5 Support for Falcon for BIG-IP https://www.f5.com/partners/technology-alliances/crowdstrike
251Views4likes0CommentsMigration from i5800 to r5800
Hi, Request to help me migration plan step by step from i5800 to r5800. In our production we are using i5800 hardware box with Active and standby HA link with version 17.1.2 and running both LTM and GTM. The hardware i5800 is going to end of support we are planning to migrate to hardware r5800. I request to help me step by step plan without any production impact and also help for the plan like tenant to tenant moving to new hardware to test and move rest of the configuration.Please let me know if any more information is required. Thanks in advance!168Views0likes4Comments