advanced-waf
16 TopicsOverview of MITRE ATT&CK Tactic : TA0004 - Privilege Escalation
Introduction The Privilege Escalation tactic in the MITRE ATT&CK, covers techniques that adversaries use to gain higher-level permissions on compromised systems or networks. After gaining initial access, attackers frequently need elevated rights to access sensitive resources, execute restricted operations, or maintain persistence. Techniques include exploiting OS vulnerabilities, misconfigurations, or weaknesses in security controls to move from user-level to admin or root privileges. This may involve abusing elevation control mechanisms (like sudo, setuid, or UAC), manipulating accounts or tokens, leveraging scheduled tasks, or exploiting valid credentials. Techniques and Sub-Techniques T1548 – Abuse Elevation Control Mechanisms This technique involves bypassing or abusing OS mechanisms that restrict elevated execution, such as sudo, UAC, or setuid binaries. Here, adversaries exploit misconfigurations or weak rules to run commands with higher privileges. This often requires no exploit code but just permission misuse. Once elevated, attackers gain access to restricted system operations. T1548.001 – Setuid and Setgid Here, attackers run the programs with elevated permissions by abusing setuid/setgid bits on Unix systems. This allows execution as another user, often root, without needing the password. T1548.002 – Bypass User Account Control Adversaries exploit UAC weaknesses to elevate privileges without user approval.This grants admin-level execution while maintaining user-level stealth. T1548.003 – Sudo and Sudo Caching In these mis-configured sudo rules or cached credentials allow attackers to run privileged commands. They escalate without full authentication or bypass intended restrictions. T1548.004 – Elevated Execution with Prompt Here, malicious actors deceive users into granting elevated rights to a malicious process. This uses social engineering rather than technical exploitation. Temporary Elevated Cloud Access Cloud platforms issue temporary privileges through roles or tokens. Misconfigured role assumptions or temporary credentials can be abused to obtain short-term high-level access. TCC Manipulation This happens when attackers tamper with macOS’s privacy-control system to wrongfully grant apps access to sensitive resources like the camera, microphone, or full disk. It essentially bypasses user consent protections. T1134 - Access Token Manipulation Adversaries modify or steal Windows access tokens to make malicious processes run with the permission of another user. By impersonating these tokens, attackers can bypass access controls, escalate privileges, and perform actions as though they are legitimate users or even SYSTEM. Token Impersonation/Theft Here attackers duplicate and impersonate another user’s token, allowing their process to operate with the privileges of the legitimate user, this technique is frequently used to gain higher-level privileges on Windows machines. Create Process with Token Adversaries use a stolen or duplicated token to spawn a new process under the security context of a higher-privilege user, enabling the execution of actions with elevated permissions. Make and Impersonate Token Attackers generate new tokens using credentials they possess, then impersonate a target user's identity to gain unauthorized access and escalate their privileges. Parent PID Spoofing This technique manipulates the parent process ID (PPID) of a new process, so it appears to have a trusted parent, helping adversaries evade defenses or gain higher privileges. SID-History Injection Here, adversaries inject SID-History attributes into access tokens or Active Directory to spoof the permissions, this technique enables attackers to sidestep traditional group membership rules, granting them privileges that would normally be restricted. T1098 - Account Manipulation It refers to actions taken by attackers to preserve their access using compromised accounts, such as modifying credentials, group memberships, or account settings. By changing permissions or adding credentials, adversaries can escalate privileges, maintain persistence, or create hidden backdoors for future access. Additional Cloud Credentials Adversaries add their own keys, passwords, or service principal credentials to victim cloud accounts, enabling escalation without detection. This allows them to use new credentials and bypass standard log or security controls in cloud environments. Additional Email Delegate Permissions Attackers may grant themselves high-level permissions on email accounts, allowing unauthorized access, control or forwarding of sensitive communications, which can give visibility into victim correspondence for further attacks. Additional Cloud Roles Adversaries assign new privileged roles to compromised accounts, expanding permissions and enabling wider access to cloud resources. SSH Authorized Keys Attackers append or modify their public keys to SSH authorized_keys files on target machines. This technique bypass password authentication and allows undetected logins to compromised systems. Device Registration Adversaries register malicious devices with victim accounts, often in MFA or management portals to maintain ongoing access. This can allow attackers to access resources as trusted endpoints. Additional Container Cluster Roles Attackers grant their accounts extra permissions or roles in container orchestration systems such as Kubernetes. These elevated roles allow broader control over cluster resources and enable cluster-wide compromise. Additional Local or Domain Groups Adversaries add their accounts to privileged local or domain groups, gaining higher-level access and capabilities. This manipulates group memberships for escalation, persistence, and dominance within target environments. T1547 – Boot or Logon Autostart Execution Attackers abuse programs that automatically run during boot or login. These locations can be modified to launch malicious code with elevated privileges. This provides persistence and often higher-level execution. It is commonly achieved by manipulating registry keys, services, or startup folders. Registry Run Keys / Startup Folder: Attackers add malicious programs to Windows Registry run keys or Startup folders to ensure automatic execution when a user logs in. This technique provides persistent and often stealthy privilege escalation on system reboot and login. Authentication Package: By installing a malicious authentication package (DLL), adversaries can intercept credentials or execute code with system-level privileges during the Windows authentication process, enabling privilege escalation and persistence. Time Providers: Attackers register malicious DLLs as Windows time providers DLLs responsible for time synchronization so that their code is loaded by system processes on boot or at scheduled intervals, allowing stealthy system-level access and persistence. Winlogon Helper DLL: Adversaries plant a helper DLL in Winlogon’s registry settings so it loads with each user logon, running malicious code with high privileges and ensuring execution whenever the system starts or a user logs in. Security Support Provider: Inserting a rogue Security Support Provider (SSP) DLL allows attackers to monitor or manipulate authentication and system logins, potentially capturing credentials and persisting with SYSTEM privileges at the operating system level. Kernel Modules and Extensions: Attackers load malicious modules or kernel extensions to run arbitrary code in kernel space, giving them unrestricted control over the system, hiding their presence, or manipulating low-level OS behavior for privilege escalation. Re-opened Applications: On macOS, adversaries abuse property list files that track reopened applications after reboot, ensuring their chosen programs or payloads relaunch automatically and persistently escalate privileges upon user login. LSASS Driver: Modifying or adding an LSASS (Local Security Authority Subsystem Service) driver gives attackers persistent system-level code execution, potentially accessing or controlling authentication processes. Shortcut Modification: By altering shortcut files (LNKs), adversaries ensure that opening a benign application or file instead executes attacker-controlled code, effectively leveraging user actions for privilege escalation and persistence. Port Monitors: Attackers install or hijack port monitoring DLLs, which Windows loads to manage printers, so that their code runs with SYSTEM privileges when the service starts, enabling privilege escalation and persistence. Print Processors: Planting a malicious print processor DLL, the software Windows uses to handle print jobs causes Windows to execute attacker code as SYSTEM whenever print functions are called, creating a persistence and privilege escalation method. XDG Autostart Entries: On Linux desktop environments, adversaries use XDG-compliant autostart entries to launch malicious programs automatically at user login, gaining persistent execution and the ability to operate with user or escalated privileges. Active Setup: Attackers add or modify Active Setup registry keys to ensure their payloads execute with elevated privileges during user profile initialization, such as when a new user logs in. Login Items: On macOS, adversaries add login items that point to their malicious applications or scripts, guaranteeing code execution with the user’s privileges whenever a login event occurs. T1037 - Boot or Logon Initialization Scripts It refers to the use of scripts that are automatically executed during system startup or user logon to help adversaries maintain persistence on a machine. By modifying these scripts, attackers can ensure their malicious code runs every time the system boots. Logon Script (Windows): Scripts configured in Windows to run automatically during user or group logon can be exploited by adversaries to execute malicious code with the user’s privileges, enabling persistence or escalation. Login Hook: A login hook is an macOS mechanism that allows scripts or executables to run automatically upon a user’s login, which attackers may abuse to achieve persistence or elevate privileges. Network Logon Script: These are scripts assigned via Active Directory or Group Policy to execute during network logon, potentially allowing adversaries to introduce or persist malicious code in a domain environment. RC Scripts: On Unix-like systems, RC (run command) scripts control startup processes. Attackers who modify these can ensure their code runs with elevated privileges every time the system boots. Startup Items: Files or programs set to launch automatically during boot or user login can be manipulated by attackers, allowing persistent or privileged execution at startup. T1543 – Create or Modify System Process Attackers modify or create system services or daemons that run with high privileges. By altering service configurations, they ensure malicious code executes as SYSTEM/root. This provides long-term persistence and elevated access. Launch Agent: Attackers can create or modify launch agents on macOS to automatically execute malicious payloads whenever a user logs in, helping maintain persistence at the user level. Systemd Service: By altering systemd service files on Linux, adversaries can ensure their code runs as a background service during startup, maintaining continuous access to the system. Windows Service: Attackers abuse Windows service configurations to install or modify services that launch malicious programs on startup or at defined intervals, allowing persistent and privileged access. Launch Daemon: On macOS, launch daemons are set up to run background processes with elevated privileges before user login, often used by attackers to achieve system-wide persistence. Container Service: Adversaries may create or modify container or cluster management services (like Docker or Kubernetes agents) to repeatedly execute malicious code inside containers as part of persistence. T1484 - Domain or Tenant Policy Modification Adversaries changing configuration settings in a domain or tenant environment, such as Active Directory or cloud identity services, to bypass security controls and escalate privileges. This can include editing group policy objects, trust relationships, or federation settings, which may impact large numbers of users or systems across an organization. Attackers leverage this technique to gain persistent elevated access and make detection or remediation much more difficult. Group Policy Modification: Attackers may alter Group Policy Objects (GPOs) in Active Directory environments to subvert security settings and gain elevated privileges across the domain. By doing, these attackers can deploy malicious tasks, change user rights or disable security controls on many systems simultaneously. Trust Modification: Adversaries change domain or tenant trust relationships, such as adding, removing or altering trust properties between domains or tenants to expand their access and ensure continued control. This can let attackers move laterally, escalate privileges across multiple domains. T1611 – Escape to Host In virtualized environments, attackers attempt to escape a container or VM. If successful, they gain access to the underlying host system, which has higher privileges. This usually arises due to weaknesses in the hypervisor or insufficient separation between virtual environments. Hence, it gives complete control to the attacker over every workload operating on that host. T1546 – Event Triggered Execution Attackers use system events like service start, scheduled job, user login, etc. to trigger malicious code. These triggers often run with SYSTEM or administrative privileges. By hijacking legitimate event handlers, the attacker executes commands without raising suspicion. It also enables persistence tied to normal system operations. Change Default File Association: Attackers alter file type associations so that opening a file triggers malicious code, helping them gain persistence or escalate privileges. Screensaver: Adversaries can replace system screensavers with malicious executables, causing code to run automatically when the screensaver activates. Windows Management Instrumentation Event Subscription: By setting up WMI event subscriptions, attackers ensure their code executes in response to specific system events, establishing stealthy persistence on Windows. Unix Shell Configuration Modification: Modifying shell configuration files like .bashrc or.profile allows adversaries to start malicious code whenever a user opens a terminal session. Trap: Attackers abuse shell trap commands to execute code in response to system signals (e.g., shutdown, logoff, or errors), enhancing persistence or privilege escalation. LC_LOAD_DYLIB Addition: By adding malicious the LC_LOAD_DYLIB header to macOS binaries, attackers can force the system to load rogue dynamic libraries during execution. Netsh Helper DLL: Attackers register malicious DLLs as Netsh helpers, ensuring their code loads whenever Netsh is used, aiding persistence or privilege escalation. Accessibility Features: Abusing Windows accessibility tools (like Sticky Keys) lets attackers invoke system shells or backdoors at the login screen, bypassing standard authentication. AppCert DLLs: Adversaries inject DLLs via AppCert DLL Registry keys, so their code runs in every process creation, creating broad persistence. AppInit DLLs: Attackers exploit AppInit DLL Registry values to ensure their DLLs are loaded into multiple processes, maintaining persistence. Application Shimming: By creating or modifying Windows application shims, adversaries force the system to redirect legitimate programs to launch malicious code. Image File Execution Options Injection: Modifying Image File Execution Options (IFEO) in Registry allows attackers to set debuggers that hijack normal application launches for persistence. PowerShell Profile: Malicious code in PowerShell profile scripts will auto-run whenever PowerShell starts, providing persistence and privilege escalation opportunities. Emond: Attackers place malicious rules in macOS’s Emond event monitor daemon, causing code to run in response to system events. Component Object Model Hijacking: By hijacking references to COM objects in Windows, adversaries ensure their code launches when certain applications or system routines are invoked. Installer Packages: Attackers may leverage installer scripts or packages to deploy persistent code during application installation or updates. Udev Rules: By modifying Linux’s udev rules, adversaries configure devices to trigger the execution of rogue code during events like hardware insertion. Python Startup Hooks: Attackers add code to Python startup scripts or modules, causing their payload to run automatically whenever Python interpreter is launched. T1068 – Exploitation for Privilege Escalation Attackers exploit software or OS vulnerabilities to gain elevated rights. This may target kernel flaws, driver bugs, or misconfigured services. By triggering the vulnerability, adversaries escalate from low-privilege to SYSTEM/root. This is one of the most direct and powerful escalation methods. T1574 – Hijack Execution Flow This technique alters how the system resolves and launches programs. Attackers place malicious files where high-privilege processes expect legitimate ones. When the privileged process starts, it inadvertently loads or executes the attacker code. This leverages DLL search order hijacking, path hijacking, and similar methods. DLL: Attackers exploit the way Windows applications load Dynamic Link Libraries (DLLs), tricking them into running malicious DLLs for code execution or privilege escalation. Dylib Hijacking: Adversaries target macOS by placing malicious dylib files in directories searched by applications, causing them to be loaded instead of legitimate libraries. Executable Installer File Permissions Weakness: Attackers leverage weak permissions on installer files to replace or modify executables, allowing unauthorized code execution with high privileges. Dynamic Linker Hijacking: This technique manipulates the loading process of shared libraries (DLLs or dylibs), often abusing environment variables (like PATH) or loader settings to ensure malicious libraries are loaded first. Path Interception by PATH Environment Variable: Adversaries modify the PATH environment variable, influencing where the system searches for executables and libraries, enabling malicious code to be loaded. Path Interception by Search Order Hijacking: Attackers exploit insecure search orders for files or DLLs, placing malicious files in locations that applications check before trusted locations. Path Interception by Unquoted Path: By taking advantage of unquoted paths in executable calls, adversaries' plant malicious files that are incorrectly loaded by the system, allowing code execution. Services File Permissions Weakness: Weak permissions on Windows service files enable attackers to replace service executables with malicious content, gaining persistent system access. Services Registry Permissions Weakness: Adversaries exploit weak registry settings of Windows services, altering keys to redirect service execution to their malicious code. COR_PROFILER: Attackers abuse the COR_PROFILER environment variable to hijack the way . NET applications load profiling DLLs, gaining code execution during app runtime. KernelCallbackTable: This involves altering callback tables in the Windows kernel to redirect the execution flow, enabling arbitrary code to run with elevated privileges. AppDomainManager: By subverting the AppDomainManager in .NET applications, adversaries gain control over the loading of assemblies, potentially executing malicious payloads during application startup. T1055 – Process Injection This involves injecting malicious code into legitimate processes. Injected processes often run with higher privileges than the attacker initially has. It enables evasion of security tools by blending into trusted processes. Successful injection allows execution under a more privileged security context. Dynamic-link Library Injection: Injects malicious DLLs into live processes to execute unauthorized code in the process memory, enabling attackers to evade defenses and elevate privileges. Portable Executable Injection: Loads or maps a malicious executable (EXE) into the address space of another process, running code under the guise of a legitimate application. Thread Execution Hijacking: Redirects the execution flow of an active thread in a process to run attacker-controlled code, often used for stealthy payload delivery. Asynchronous Procedure Call (APC): Delivers malicious code by queuing attacker-specified functions (APCs) to run in the context of another process or thread. Thread Local Storage (TLS): Uses TLS callbacks within a process to execute injected code when the process loads DLLs, often leveraging this for covert malware execution. Ptrace System Calls: Exploits ptrace debugging capabilities (on Unix/Linux) to inject and execute malicious code within the address space of a targeted process. Proc Memory: Modifies memory structures directly through the /proc filesystem (Linux/Unix) to inject or alter code in running processes for persistence or privilege escalation. Extra Window Memory Injection: Injects code into special memory regions (like window memory in Windows GUI processes) to achieve code execution in those processes. Process Hollowing: Creates a legitimate process, then swaps its memory with attacker code, making malware run under the mask of valid processes to evade detection. Process Doppelgänging: Leverages Windows Transactional NTFS (TxF) and process creation mechanisms to run malicious code in a way that appears legitimate and avoids conventional monitoring. VDSO Hijacking: Modifies the Virtual Dynamic Shared Object (VDSO) in Linux to execute injected code during system or process startup routines. ListPlanting: Manipulates application or window list memory, using this entrypoint for code injection into legitimate processes without overtly altering their main execution flow. T1053 – Scheduled Task/Job Attackers create or modify scheduled tasks to run malware with elevated privileges. These jobs often execute under SYSTEM, root, or service accounts. It provides both persistence and privilege escalation. The scheduled execution blends into normal automated system behavior. At: Attackers use the "at" scheduling utility on Windows or Unix-like systems to set up tasks that run at specific times, enabling persistence or timed execution of malicious programs. Cron: By adding entries to cron on Unix/Linux systems, adversaries can schedule their malicious code to execute automatically at regular intervals, maintaining access without user interaction. Scheduled Task: Threat actors abuse operating system scheduling features (like Windows Task Scheduler) to run unwanted commands or software on startup or according to a set schedule for persistence. Systemd Timers: In Linux environments, attackers configure systemd timers to trigger services or executables at designated times, ensuring regular execution of their payloads even after restarts. Container Orchestration Job: Adversaries leverage cluster scheduling platforms (such as Kubernetes Cron Jobs) to deploy containers that repeatedly execute malicious code across multiple nodes, providing scalable and automated persistence in cloud-native environments. T1078 – Valid Accounts Adversaries use stolen credentials to access legitimate user, admin, or service accounts for initial access, persistence, or privilege escalation, often bypassing security controls by blending in with normal activity. Default Accounts: These are pre-configured accounts built into operating systems or applications, such as guest or administrator; attackers exploit weak, unchanged, or known passwords on these accounts to gain unauthorized access. Domain Accounts: Managed by Active Directory, domain accounts allow users, administrators, or services to access resources across an organization’s network; adversaries leverage compromised domain credentials for lateral movement or privileged actions. Local Accounts: Accounts specific to a single machine or device, often with administrative privileges; attackers use compromised local credentials to escalate rights or maintain control over endpoints. Cloud Accounts: These are accounts for cloud platforms or services (like AWS, Azure, GCP); Those adversaries who obtain these credentials can gain significant control, escalate privileges, or persist in cloud environments. How F5 can help? F5 security solutions, including BIG-IP, NGINX, and Distributed Cloud, provide robust defenses against privilege escalation risks by enforcing strict access controls, role-based permissions, and session validation. These protections mitigate risks from vulnerabilities and misconfigurations that adversaries exploit to elevate privileges. F5’s security capabilities also offer monitoring and threat detection mechanisms that help identify anomalous activities indicative of privilege escalation attempts. For more information, please contact your local F5 sales team. Conclusion Privilege escalation is a critical cyberattack tactic that allows attackers to move from limited access to elevated permissions, often as administrator or root on compromised systems. This expanded control lets attackers disable security measures, steal sensitive data, persist in the environment, and launch more damaging attacks. Preventing and detecting privilege escalation requires layered defenses, vigilant access management, and regular security monitoring to minimize risk and respond quickly to unauthorized privilege gains. Reference Links: MITRE ATT&CK® Privilege Escalation, Tactic TA0004 - Enterprise | MITRE ATT&CK® MITRE ATT&CK: What It Is, How it Works, Who Uses It and Why | F5 Labs40Views0likes0CommentsOverview of MITRE ATT&CK Tactic : TA0009 - Collection
This article is a continuation of our MITRE ATT&CK series. In this article, we focus on the Collection tactic, and the techniques adversaries use to gather, stage, and organize data from compromised systems before exfiltration. As attackers progress through an intrusion, Collection becomes critical for assembling sensitive files, credentials, screenshots, and other high‑value information that will fuel data theft, espionage, or destructive operations.63Views2likes0CommentsOverview of MITRE ATT&CK Tactic - TA0010 Exfiltration
Introduction In current times of cyber vulnerabilities, data theft is the ultimate objective with which attackers monetize their presence within a victim network. Once valuable information is identified and collected, the attackers can package sensitive data, bypass perimeter defences, and finalize the breach. Exfiltration (MITRE ATT&CK Tactic TA0010) represents a critical stage of the adversary lifecycle, where the adversaries focus on extracting data from the systems under their control. There are multiple ways to achieve this, either by using encryption and compression to avoid detection or utilizing the command-and-control channel to blend in with normal network traffic. To avoid this data loss, it is important for defenders to understand how data is transferred from any system in the network and the various transmission limits imposed to maintain stealth. This article walks through the most common Exfiltration techniques and how F5 solutions provide strong defense against them. T1020 - Automated Exfiltration To exfiltrate the data, adversaries may use automated processing after gathering the sensitive data during collection. T1020.001 – Traffic Duplication Traffic mirroring is a native feature for some devices for traffic analysis, which can be used by adversaries to automate data exfiltration. T1030 – Data Transfer Size Limits Exfiltration of the data in limited-size packets instead of whole files to avoid network data transfer threshold alerts. T1048 – Exfiltration over Alternative Protocol Stealing of data over a different protocol or channel other than the command-and-control channel created by the adversary. T1048.001 – Exfiltration Over Symmetric Encrypted Non-C2 Protocol Symmetric Encryption uses shared or the same keys/secrets on all the channels, which requires an exchange of the value used to encrypt and decrypt the data. This symmetric encryption leads to the implementation of Symmetric Cryptographic Algorithms, like RC4, AES, baked into the protocols, resulting in multiple layers of encryption. T1048.002 – Exfiltration Over Asymmetric Encrypted Non-C2 Protocol Asymmetric encryption algorithms or public-key cryptography require a pair of cryptographic keys that can encrypt/decrypt data from the corresponding keys on each end of the channel. T1048.003 – Exfiltration Over Unencrypted Non-C2 Protocol Instead of encryption, adversaries may obfuscate the routine channel without encryption within network protocols either by custom or publicly available encoding/compression algorithms (base64, hex-code) and embedding the data. T1041 – Exfiltration Over C2 Channel Adversaries can also steal the data over command-and-control channels and encode the data into normal communications. T1011 – Exfiltration Over Other Network Medium Exfiltration can also occur through a wired Internet connection, for example, a WiFi connection, modem, cellular data connection or Bluetooth. T1011.001 – Exfiltration Over Bluetooth Bluetooth can also be used to exfiltrate the data instead of a command-and-control channel in case the command-and-control channel is a wired Internet connection. T1052 – Exfiltration Over Physical Medium Under circumstances, such as an air-gapped network compromise, exfiltration occurs through a physical medium. Adversaries can exfiltrate data using a physical medium, for example, say a removable drive. Some examples of such media include external hard drives, USB drives, cellular phones, or MP3 players. T1052.001 – Exfiltration Over USB One such circumstance is where the adversary may attempt to exfiltrate data over a USB connected physical device, which can be used as the final exfiltration point or to hop between other disconnected systems. T1567 – Exfiltration Over Web Services Adversaries may use legitimate external Web Service to exfiltrate the data instead of their command-and-control channel. T1567.001 – Exfiltration to Code Repository To exfiltrate the data to a code repository, rather than adversary’s command-and-control channel. These code repositories are accessible via an API over HTTPS. T1567.002 – Exfiltration to Cloud Storage To exfiltrate the data to a cloud storage, rather than their primary command-and-control channel. These cloud storage services allow storage, editing and retrieval of the exfiltrated data. T1567.003 – Exfiltration to Text Storage Sites To exfiltrate the data to a text storage site, rather than their primary command-and-control. These text storage sites, like pastebin[.]com, are used by developers to share code. T1567.004 – Exfiltration Over Webhook Adversaries also exfiltrate the data to a webhook endpoint, which are simple mechanisms for allowing a server to push data over HTTP/S to a client. The creation of webhooks is supported by many public services, such as Discord and Slack, that can be used by other services, like GitHub, Jira, or Trello. T1029 – Scheduled Transfer To exfiltrate the data, the adversaries may schedule data exfiltration only at certain times of the day or at certain intervals, blending the traffic patterns with general activity. T1537 – Transfer Data to Cloud Account Many a times, exfiltration of data can also be through transferring the data through sharing/syncing and creating backups of cloud environment to another cloud account under adversary control on the same service. How F5 Can Help F5 offers a comprehensive suite of security solutions designed to safeguard applications and APIs across diverse environments, including cloud, edge, on-premises, and hybrid platforms. These solutions enable robust risk management to effectively mitigate and protect against MITRE ATT&CK Exfiltration threats, delivering advanced functionalities such as: Web Application Firewall (WAF): Available across all F5 products, the WAF is a flexible, multi-layered security solution that protects web applications from a wide range of threats. It delivers consistent defense, whether applications are deployed on-premises, in the cloud, or in hybrid environments. HTTPS Encryption: F5 provides robust HTTPS encryption to secure sensitive data in transit, ensuring protected communication between users and applications by preventing unauthorized access or data interception. Protecting sensitive data with Data Guard: F5's WAF Data Guard feature prevents sensitive data leakage by detecting and blocking exposure of confidential information, such as credit card numbers and PII. It uses predefined patterns and customizable policies to identify transmissions of sensitive data in application responses or inputs. This proactive mechanism secures applications against data theft and ensures compliance with regulatory standards. For more information, please contact your local F5 sales team. Conclusion Adversaries Exfiltration of data often aims to steal sensitive information by packaging it to evade detection, using methods such as compression or encryption. They may transfer the data through command-and-control channels or alternate paths while applying stealth techniques like transmission size limitations. To defend against these threats, F5 provides a layered approach with its advanced offerings. The Web Application Firewall (WAF) identifies and neutralizes malicious traffic aimed at exploiting application vulnerabilities. HTTPS encryption ensures secure data transmission, preventing unauthorized interception during the attack. Meanwhile, a data guard policy set helps detect and block exposure of confidential information, such as credit card numbers and PII. Together, these F5 solutions effectively counteract data exfiltration attempts and safeguard critical assets. Reference links MITRE | ATT&CK Tactic 10 – Exfiltration MITRE ATT&CK: What It Is, how it Works, Who Uses It and Why | F5 Labs MITRE ATT&CK®80Views1like0CommentsMitigating OWASP API Security Risk: BOPLA using F5 BIG-IP
BOPLA i.e Broken Object Property Level Authorization is combination of Mass Assignment vulnerability and Excessive Data Exposure attack, one is caused due to automatic binding of client-provided data to code internal object without proper validation while other is due to expose of sensitive data such as Personally Identifiable Information (PII), Social Security Number (SSN), Credit Card Number (CCN) and Phone Number etc. These vulnerabilities in the application is mitigated by the F5 BIG-IP Advanced WAF.224Views1like0CommentsMitigating OWASP API Security Risk: Excessive Data Exposure using F5 BIG-IP
Excessive Data Exposure vulnerability leaks the sensitive data of the user results in serious concerns to an organization security. F5 BIG IP Advanced WAF or ASM protects the web application or server from Excessive Data Exposure vulnerability and provides feasibility to block/mask valuable data like Social Security Number (SSN), Credit Card Number (CCN). Personally Identifiable Information (PII) and Phone Number as well. This protects from attackers and leverages system security.229Views1like1CommentMitigating OWASP Web Application Risk: Vulnerable and Outdated Components using F5 BIG-IP
This article provides information on the Struts 2 vulnerability (CVE-2017-5638) , one of the dangers posed by vulnerable and outdated components. It highlights how a single unpatched vulnerability in a widely used framework can lead to catastrophic consequences, including data breaches, server compromise, and damage to an organisation's reputation and how we can protect it using F5 BIG-IP Advanced WAF.187Views0likes0CommentsMitigating OWASP API Security Risk: Mass Assignment using F5 BIG-IP
This article is a continuation of the OWASP Top 10 API Security series. It aims to explain Mass Assignment and how to stop it using F5 BIG-IP Advanced WAF. Introduction to Mass Assignment: In today’s world of data communication, applications often interact with one another to enable data sharing and improve services to meet user needs. At the core of these interactions are APIs, which are extensively utilized in modern application development. To streamline their implementation, developers commonly rely on various software frameworks. However, these frameworks often introduce a security risk by automatically binding client-provided data to code variables and internal objects without proper validation. This lack of validation creates an opportunity for an attacker to exploit a vulnerability known as Mass Assignment. In the screenshot mentioned above, describes the exploitation of Mass Assignment vulnerability. Attacker has successfully escalated his role from normal user to admin by modifying the JSON content of the API request. At first, the attacker sends a valid API request to the vulnerable application to add the user and gets a response back with a parameter that defines the role. In the second step, the attacker tampers the role parameters and sends the API request, due to lack of validations at the web server. This results in successful exploitation of the system. Preventive Steps: Automatic binding of client-input data into application’s internal code variables must be avoided. Clearly defining input parameters that should be allowed/blocked from the client-input data. Schema should be explicitly defined and enforced for the input parameters. Demo Attack and Mitigation steps using BIG-IP Advanced WAF: Using BIG-IP Advanced WAF, we define schemas with fixed parameters and only those are allowed from the client-input data and block the rest, thereby causing restrictions to the parameters that make the system vulnerable. The steps mentioned below give some brief details about creating a security policy using WAF policy API Security templates, which are designed to protect web applications that expose APIs from vulnerabilities. It focuses on safeguarding API endpoints, managing authentication, controlling access, and mitigating threats that target API logic and data handling. We generate a mass assignment attack followed by enforcing blocking mode to block the attack using BIG-IP. Let us now see a quick demo of mass assignment and mitigate it using BIG-IP Advanced WAF policy API Security template. Note: Following configs and validations are done on F5 BIG-IP VE with version: BIG-IP 16.1.6 Build 0.0.3 As a vulnerable application to exploit mass assignment, I chose crAPI demo application. Demo app crAPI Github repo Note: Before proceeding further into the demo, let us restrict the “quantity” value to 1 by adding a “minimum” keywork with value as 1 in the crAPI’s OpenAPI specification file or swagger file to positive values before uploading it to BIG-IP while creating a policy. Let’s try to violate the quantity value with input parameters and observe the behavior during Transparent and blocking mode. Step 1: Creating a security policy On the Main tab, click Security > Application Security > Security Policies. Click on Create to create the policy. Provide a name in the Name field. Make sure the Policy Type is Security. From the Policy Template, select API Security. The OpenAPI (Swagger) File field is now visible. Click Upload File to navigate to your OpenAPI specification file and upload it. From the Virtual Server dropdown, select the virtual server to which this policy should be assigned. Under Learning and Blocking section, make sure Enforcement Mode is initially set to Transparent to observe the attack requests. Click on Save to save the security policy configured. This confirms security policy is saved successfully. Step 2: Attack Generation and Mitigation In the demonstration below, we have an API endpoint which is used to order products. This endpoint has a vulnerable object named “quantity”. By providing negative value to this variable not only results in successful ordering of a product but also causes increment in available balance. This results in successful exploitation of mass assignment. As shown above, the available balance for a user is $200. From the above screenshot, you can be able to see on placing the order worth $10 successfully shows available balance as $190, which is expected behavior. Now, let us try to place an order for the same product with negative quantity for the same endpoint and check whether mass assignment vulnerability is present or not. As you can be able to see from above screenshot, order is successfully placed by providing client-input variable “quantity” with negative value and increment in available balance by $10 which is not expected. This confirms that mass assignment vulnerability exists in this demo application. BIG-IP logs show alarm for the above request in transparent mode. Now, let’s modify the policy to Blocking mode and observe the behavior. From the Policy configuration, Select Enforcement mode as Blocking, click on Save and then click on Apply Policy button. Once the policy is updated, and re-trying the same attack, the attack request is blocked. Conclusion: Mass assignment vulnerability provides an opportunity for attackers to exploit the vulnerability using client-input variables. BIG-IP Advanced WAF’s OpenAPI schema validation feature helps to detect and mitigate these vulnerabilities, thereby safeguarding the application and enhancing overall security of the system. References: For more detailed guidance on OWASP and steps to configuring Advanced WAF security policy on F5 BIG IP, refer to the official documentation below: https://owasp.org/API-Security/editions/2019/en/0xa6-mass-assignment/ https://techdocs.f5.com/en-us/bigip-17-0-0/big-ip-asm-implementations/working-with-openapi.html352Views1like1CommentMitigating OWASP Web Application Risk: Security Misconfiguration using F5 BIG-IP
Security misconfiguration is OWASP Top 10 Web Application Security risk, it occurs when security settings are not properly set, and hence attacker comes up with XXE (XML eXternal Entity) attack to exploit the vulnerability. F5 BIG-IP Advanced WAF or ASM looks for XML injection attempts and blocks it, there by protecting the application.253Views0likes0CommentsMitigating Log4j Vulnerability using F5 BIG-IP
This article throws some light on the Apache Log4j vulnerability (CVE-2021-44228) and how attackers can exploit this vulnerability by injecting malicious JNDI strings into input fields, HTTP headers, API requests, etc. Finally we also provided solution how we can protect it using F5 Advanced WAF.341Views1like0Comments