web acceleration
55 TopicsCloud Storage Gateways. Short term win, but long term…?
In the rush to cloud, there are many tools and technologies out there that are brand new. I’ve covered a few, but that’s nowhere near a complete list, but it’s interesting to see what is going on out there from a broad-spectrum view. I have talked a bit about Cloud Storage Gateways here. And I’m slowly becoming a fan of this technology for those who are considering storing in the cloud tier. There are a couple of good reasons to consider these products, and I was thinking about the reasons and their standing validity. Thought I’d share with you where I stand on them at this time, and what I see happening that might impact their value proposition. The two vendors I have taken some time to research while preparing this blog for you are Nasuni and Panzura. No doubt there are plenty of others, but I’m writing you a blog here, not researching a major IT initiative. So I researched two of them to have some points of comparison, and leave the in-depth vendor selection research to you and your staff. These two vendors present similar base technology and very different additional feature sets. Both rely heavily upon local caching in the controller box, and both work with multiple cloud vendors, and both claim to manage compression. Nasuni delivers as a Virtual Appliance, includes encryption on your network before transmitting to the cloud, automated cloud provisioning, and caching that has timed updates to the cloud, but can perform a forced update if the cache gets full. It presents the cloud storage you’ve provisioned as a NAS on your end. Panzura delivers a hardware appliance that also presents the cloud as a NAS, works with multiple cloud vendors, handles encryption on-device, and claims global dedupe. I say claims, because “global” has a meaning that is “all” and in their case “all” means “all the storage we know about”, not “all the storage you know”. I would prefer a different term, but I get what they mean. Like everything else, they can’t de-dupe what they don’t control. They too present the cloud storage you’ve provisioned as a NAS on your end, but claim to accelerate CIFS and NFS also. Panzura is also trying to make a big splash about speeding access to MS-Sharepoint, but honestly, as a TMM for F5, a company that makes two astounding products that speed access to Sharepoint and nearly everything else on the Internet (LTM and WOM), I’m not impressed by Sharepoint acceleration. In fact, our Sharepoint Application Ready Solution is here, and our list of Application Ready Solutions is here. Those are just complete architectures we support directly, and don’t touch on what you can do with the products through Virtuals, iRules, profiles, and the host of other dials and knobs. I could go on and on about this topic, but that’s not the point of this blog, so suffice it to say there are some excellent application acceleration and WAN Optimization products out there, so this point solution alone should not be a buying criteria. There are some compelling reasons to purchase one of these products if you are considering cloud storage as a possible solution. Let’s take a look at them. Present cloud storage as a NAS – This is a huge benefit right now, but over time the importance will hopefully decrease as standards for cloud storage access emerge. Even if there is no actual standard that everyone agrees to, it will behoove smaller players to emulate the larger players that are allowing access to their storage in a manner that is similar to other storage technologies. Encryption – As far as I can see this will always be a big driver. They’re taking care of encryption for you, so you can sleep at night as they ship your files to the public cloud. If you’re considering them for non-public cloud, this point may still be huge if your pipe to the storage is over the public Internet. Local Caching – With current broadband bandwidths, this will be a large driver for the foreseeable future. You need your storage to be responsive, and local caching increases responsiveness, depending upon implementation, cache size, and how many writes you are doing this could be a huge improvement. De-duplication – I wish I had more time to dig into what these vendors mean by dedupe. Replacing duplicate files with a symlink is simplest and most resembles existing file systems, but it is also significantly less effective than partial file de-dupe. Let’s face it, most organizations have a lot more duplication laying around in files named Filename.Draft1.doc through Filename.DraftX.doc than they do in completely duplicate files. Check with the vendors if you’re considering this technology to find out what you can hope to gain from their de-dupe. This is important for the simple reason that in the cloud, you pay for what you use. That makes de-duplication more important than it has historically been. The largest caution sign I can see is vendor viability. This is a new space, and we have plenty of history with early entry players in a new space. Some will fold, some will get bought up by companies in adjacent spaces, some will be successful… at something other than Cloud Storage Gateways, and some will still be around in five or ten years. Since these products compress, encrypt, and de-dupe your data, and both of them manage your relationship with the cloud vendor, losing them is a huge risk. I would advise some due diligence before signing on with one – new companies in new market spaces are not always a risky proposition, but you’ll have to explore the possibilities to make sure your company is protected. After all, if they’re as good as they seem, you’ll soon have more data running through them than you’ll have free space in your data center, making eliminating them difficult at best. I haven’t done the research to say which product I prefer, and my gut reaction may well be wrong, so I’ll leave it to you to check into them if the topic interests you. They would certainly fit well with an ARX, as I mentioned in that other blog post. Here’s a sample architecture that would make “the Cloud Tier” just another piece of your virtual storage directory under ARX, complete with automated tiering and replication capabilities that ARX owners thrive on. This sample architecture shows your storage going to a remote data center over EDGE Gateway, to the cloud over Nasuni, and to NAS boxes, all run through an ARX to make the client (which could be a server or a user – remember this is the NAS client) see a super-simplified, unified directory view of the entire thing. Note that this is theoretical, to my knowledge no testing has occurred between Nasuni and ARX, and usually (though certainly not always) the storage traffic sent over EDGE Gateway will be from a local NAS to a remote one, but there is no reason I can think of for this not to work as expected – as long as the Cloud Gateway really presents itself as a NAS. That gives you several paths to replicate your data, and still presents client machines with a clean, single-directory NAS that participates in ADS if required. In this case Tier one could be NAS Vendor 1, Tier two NAS Vendor 2, your replication targets securely connected over EDGE Gateway, and tier 3 (things you want to save but no longer need to replicate for example) is the cloud as presented by the Cloud Gateway. The Cloud Gateway would arbitrate between actual file systems and whatever idiotic interface the cloud provider decided to present and tell you to deal with, while the ARX presents all of these different sources as a single-directory-tree NAS to the clients, handling tiering between them, access control, etc. And yes, if you’re not an F5 shop, you could indeed accomplish pieces of this architecture with other solutions. Of course, I’m biased, but I’m pretty certain the solution would not be nearly as efficient, cool, or let you sleep as well at night. Storage is complicated, but this architecture cleans it up a bit. And that’s got to be good for you. And all things considered, the only issue that is truly concerning is failure of a startup cloud gateway vendor. If another vendor takes one over, they’ll either support it or provide a migration path, if they are successful at something else, you’ll have plenty of time to move off of their storage gateway product, so only outright failure is a major concern. Related Articles and Blogs Panzura Launches ANS, Cloud Storage Enabled Alternative to NAS Nasuni Cloud Storage Gateway InfoSmack Podcasts #52: Nasuni (Podcast) F5’s BIG-IP Edge Gateway Solution Takes New Approach to Unifying, Optimizing Data Center Access Tiering is Like Tables or Storing in the Cloud Tier444Views0likes1CommentDatabases in the Cloud Revisited
A few of us were talking on Facebook about high speed rail (HSR) and where/when it makes sense the other day, and I finally said that it almost never does. Trains lost out to automobiles precisely because they are rigid and inflexible, while population densities and travel requirements are highly flexible. That hasn’t changed since the early 1900s, and isn’t likely to in the future, so we should be looking at different technologies to answer the problems that HSR tries to address. And since everything in my universe is inspiration for either blogging or gaming, this lead me to reconsider the state of cloud and the state of cloud databases in light of synergistic technologies (did I just use “synergistic technologies in a blog? Arrrggghhh…). There are several reasons why your organization might be looking to move out of a physical datacenter, or to have a backup datacenter that is completely virtual. Think of the disaster in Japan or hurricane Katrina. In both cases, having even the mission critical portions of your datacenter replicated to the cloud would keep your organization online while you recovered from all of the other very real issues such a disaster creates. In other cases, if you are a global organization, the cost of maintaining your own global infrastructure might well be more than utilizing a global cloud provider for many services… Though I’ve not checked, if I were CIO of a global organization today, I would be looking into it pretty closely, particularly since this option should continue to get more appealing as technology continues to catch up with hype. Today though, I’m going to revisit databases, because like trains, they are in one place, and are rigid. If you’ve ever played with database Continuous Data Protection or near-real-time replication, you know this particular technology area has issues that are only now starting to see technological resolution. Over the last year, I have talked about cloud and remote databases a few times, talking about early options for cloud databases, and mentioning Oracle Goldengate – or praising Goldengate is probably more accurate. Going to the west in the US? HSR is not an option. The thing is that the options get a lot more interesting if you have Goldengate available. There are a ton of tools, both integral to database systems and third-party that allow you to encrypt data at rest these days, and while it is not the most efficient access method, it does make your data more protected. Add to this capability the functionality of Oracle Goldengate – or if you don’t need heterogeneous support, any of the various database replication technologies available from Oracle, Microsoft, and IBM, you can seamlessly move data to the cloud behind the scenes, without interfering with your existing database. Yes, initial configuration of database replication will generally require work on the database server, but once configured, most of them run without interfering with the functionality of the primary database in any way – though if it is one that runs inside the RDBMS, remember that it will use up CPU cycles at the least, and most will work inside of a transaction so that they can insure transaction integrity on the target database, so know your solution. Running inside the primary transaction is not necessary, and for many uses may not even be desirable, so if you want your commits to happen rapidly, something like Goldengate that spawns a separate transaction for the replica are a good option… Just remember that you then need to pay attention to alerts from the replication tool so that you don’t end up with successful transactions on the primary not getting replicated because something goes wrong with the transaction on the secondary. But for DBAs, this is just an extension of their daily work, as long as someone is watching the logs. With the advent of Goldengate, advanced database encryption technology, and products like our own BIG-IPWOM, you now have the ability to drive a replica of your database into the cloud. This is certainly a boon for backup purposes, but it also adds an interesting perspective to application mobility. You can turn on replication from your data center to the cloud or from cloud provider A to cloud provider B, then use VMotion to move your application VMS… And you’re off to a new location. If you think you’ll be moving frequently, this can all be configured ahead of time, so you can flick a switch and move applications at will. You will, of course, have to weigh the impact of complete or near-complete database encryption against the benefits of cloud usage. Even if you use the adaptability of the cloud to speed encryption and decryption operations by distributing them over several instances, you’ll still have to pay for that CPU time, so there is a balancing act that needs some exploration before you’ll be certain this solution is a fit for you. And at this juncture, I don’t believe putting unencrypted corporate data of any kind into the cloud is a good idea. Every time I say that, it angers some cloud providers, but frankly, cloud being new and by definition shared resources, it is up to the provider to prove it is safe, not up to us to take their word for it. Until then, encryption is your friend, both going to/from the cloud and at rest in the cloud. I say the same thing about Cloud Storage Gateways, it is just a function of the current state of cloud technology, not some kind of unreasoning bias. So the key then is to make sure your applications are ready to be moved. This is actually pretty easy in the world of portable VMs, since the entire VM will pick up and move. The only catch is that you need to make sure users can get to the application at the new location. There are a ton of Global DNS solutions like F5’s BIG-IP Global Traffic Manager that can get your users where they need to be, since your public-facing IPs will be changing when moving from organization to organization. Everything else should be set, since you can use internal IP addresses to communicate between your application VMs and database VMs. Utilizing a some form of in-flight encryption and some form of acceleration for your database replication will round out the solution architecture, and leave you with a road map that looks more like a highway map than an HSR map. More flexible, more pervasive.365Views0likes0CommentsIs it time for a new Enterprise Architect?
After a short break to get some major dental rework done, I return to you with my new, sore mouth for a round of “Maybe we should have…” discussions. In the nineties and early 21st century, positions were created in may organizations with titles like “chief architect” and often there was a group whose title were something like “IT Architect”. These people made decisions that impacted one or all subsidiaries of an organization, trying to bring standardization to systems that had grown organically and were terribly complex. They ushered in standards, shared code between disparate groups, made sure that AppDev and Network Ops and Systems Admins were all involved in projects that touched their areas. The work they did was important to the organization, and truly different than what had come before. Just like in the 20th century the concept of a “Commander of Army Group” became necessary because the armies being fielded were so large that you needed an overall commander to make sure the pieces were working together, the architect was there (albeit with far less power than an Army Group commander) to make sure all the pieces fit together. Through virtualization, they managed to keep the ball rolling, and direct things such that a commitment to virtualization was applied everywhere it made sense. Organizations without this role did much the same, but those with this role had a person responsible for making sure things moved along as smoothly as a major architecture change that impacts users, systems, apps, and networks can. Steve Martin in Little Shop of Horrors I worked on an enterprise architecture team for several years in the late 90s, and the work was definitely challenging, and often frustrating, but was a role (at least at the insurer I worked for) that had an impact on cutting waste out of IT and building a robust architecture in apps, systems, and networks. The problem was that network and security staff were always a bit distanced from architecture. A couple of companies whose architects I hung out with (Southwestern Bell comes to mind) had managed to drive deep into the decision making process for all facets of IT, but most of us were left with systems and applications being primary and having to go schmooze and beg to get influence in the network or security groups. Often we were seen as outsiders telling them what to do, which wasn’t the case at all. For the team we were on, if one subsidiary had a rocking security bit, we wanted it shared across the other subsidiaries so they would all benefit from this work the organization had already paid for. It was tough work, and some days you went home feeling as if you’d accomplished nothing. But when it all came together, it was a great job to have. You saw almost every project the organization was working on, you got to influence their decisions, and you got to see the project implemented. It was a fun time. Now, we face a scenario in networking and network architecture that is very similar to that faced by applications back then. We have to make increasingly complex networking decisions about storage, app deployment, load distribution, and availability. And security plays a critical role in all of these choices because if your platform is not secure, none of the applications running on it are. We use the term “Network architecture” a lot, and some of us even use it to describe all the possibilities – Internal, SaaS providers, cross-datacenter WAN, the various cloud application/platform providers, and cloud storage… But maybe it is time to create a position that can juggle all of these balls and get applications to the right place. This person could work with business units to determine needs, provide them with options about deployment that stress strengths and weaknesses in terms of their application, and make sure that each application lives in a “happy place” where all of its needs are met, and the organization is served by the locality. We here at F5, along with many other infrastructure vendors, are increasingly offering virtual versions of our products, in our case the goal is to allow you to extend the impact of our market leading ADC and File Virtualization appliances to virtualized and cloud environments. I won’t speak for other vendors about why they’re doing it, each has a tale to tell that I wouldn’t do justice to. But the point of this blog is that all of these options… In the cloud, or reserve capacity in the cloud? What impact does putting this application in the cloud have on WAN bandwidth? Can we extend our application firewall security functionality to protect this application if it is sent out to the cloud? Would an internal virtualized deployment be a better fit for the volume of in-datacenter database accesses that this particular application makes? Can we run this application from multiple datacenters and share the backend systems somehow, and if so what is the cost? These are the exact types of questions that a dedicated architect, specialized in deployment models, could ask and dig to find the answers to. It would be just like the other architecture team members, but more focused on getting the most out of where an application is deployed and minimizing the impacts of choices one application team makes upon everyone else. I think it’s time. A network architect worries mostly about the internal network, and perhaps some of the items above, we should use a different title. I know it’s been abused in the past, but extranet architect might be a good title. Since they would need to increasingly be able to interface with business units and explain choices and impacts, I think I prefer application locality architect… But that makes light of some of the more technical aspects of the job, like setting up load balancing in a cloud – or at least seeing to it that someone is. Like other architecture jobs, it would be a job of influence, not command. The role is to find the best solution given the parameters of the problem, and then sell the decision makers on why they are the right choice. But that role works well for all the other enterprise architect jobs, just takes a certain type of personality to get it done. Nothing new there, so knowledge of all of the options available would become the largest requirement… How costs of a cloud deployment at vendor X compare to costs of virtual deployment, what the impact of cloud-based applications are on the WAN (given application parameters of course), etc. There are a ton of really smart people in IT, so finding someone capable of digesting and utilizing all of that information may be easier than finding someone who can put up with “You may have the right solution, but for political reasons, we’re going to do this really dumb thing instead” with equanimity. And for those of you who already have a virtualization or cloud architect… Well that’s just a bit limiting if you have multiple platform choices and multiple deployment avenues. Just like there were application architects and enterprise architecture used their services, so would it be with this role and those specialized architects.286Views0likes1CommentMore Complexity, New Problems, Sounds Like IT!
It is a very cool world we live in, where technology is concerned. We’re looking at a near future where your excess workload, be it applications or storage, can be shunted off to a cloud. Your users have more power in their hands than ever before, and are chomping at the bit to use it on your corporate systems. IBM recently announced a memory/storage breakthrough that will make Flash disks look like 5.25 inch floppies. While we can’t know what tomorrow will bring, we can certainly know that the technology will enable us to be more adaptable, responsive, and (yes, I’ll say it) secure. Whether we actually are or not is up to us, but the tools will be available. Of course, as has been the case for the last thirty years, those changes will present new difficulties. Enabling technology creates issues… Which create opportunity for emerging technology. But we have to live through the change, and deal with making things sane. In the near future, you will be able to send backup and replication data to the cloud, reducing your on-site storage and storage administration needs by a huge volume. You can today, in fact, with products like F5’s ARX Cloud Extender. You will also be able to grant access to your applications from an increasing array of endpoint devices, again, you can do it today, with products like F5’s ASM for VPN access and APM for application security, but recent surveys and events in the security space should be spurring you to look more closely into these areas. SaaS is cool again in many areas that it had been ruled out – like email – to move the expense of relatively standardized high volume applications out of the datacenter and into the hands of trusted vendors. You can get email “in the cloud” or via traditional SaaS vendors. That’s just some of the changes coming along, and guess who is going to implement these important changes, be responsible for making them secure, fast, and available? That would be IT. To frame the conversation, I’m going to pillage some of Lori’s excellent graphics and we’ll talk about what you’ll need to cover as your environment changes. I won’t use the one showing little F5 balls on all of the strategic points of control, but if we have one. First, the points of business value and cost containment possible on the extended datacenter network. Notice that this slide is couched in terms of “how can you help the business”. Its genius is that Lori drew an architecture and then inserted business-relevant bits into it, so you can equate what you do every day to helping the business. Next up is the actual Strategic Points of Control slide, where we can see the technological equivalency of these points. So these few points are where you can hook in to the existing infrastructure offer you enhanced control of your network – storage, global, WAN, LAN, Internet clients – by putting tools into place that will act upon the data passing through them and contain policies and programmability that give you unprecedented automation. The idea here is that we are stepping beyond traditional deployments, to virtualization, remote datacenters, cloud, varied clients, ever-increasing storage (and cloud storage of course), while current service levels and security will be expected to be maintained. That’s a tall order, and stepping up the stack a bit to put strategic points of control into the network helps you manage the change without killing yourself or implementing a million specialized apps, policies, and procedures just to keep order and control costs. At the Global Strategic Point of Control, you can direct users to a working instance of your application, even if the primary application is unavailable and users must be routed to a remote instance. At this same place, you can control access to restricted applications, and send unauthorized individuals to a completely different server than the application they were trying to access. That’s the tip of the iceberg, with load balancing to local strategic points of control being one of the other uses that is beyond the scope of this blog. The Local Strategic Point of Control offers performance, reliability, and availability in the guise of load balancing, security in the form of content-based routing and application security – before the user has hit the application server – and encryption of sensitive data flowing internally and/or externally, without placing encryption burdens on your servers. The Storage Strategic Point of Control offers up tiering and storage consolidation through virtual directories, heterogeneous security administration, and abstraction of the NAS heads. By utilizing this point of control between the user and the file services, automation can act across vendors and systems to balance load and consolidate data access. It also reduces management time for endpoint staff, as the device behind a mount/map point can be changed without impacting users. Remote site VPN extension and DMZ rules consolidation can happen at the global strategic point of control at the remote site, offering a more hands-off approach to satellite offices. Note that WAN Optimization occurs across the WAN, over the Local and global strategic points of control. Web Application Optimization also happens at the global or local strategic point of control, on the way out to the end point device. What’s not shown is a large unknown in cloud usage – how to extend the control you have over the LAN out to the cloud via the WAN. Some things are easy enough to cover by sending users to a device in your datacenter and then redirecting to the cloud application, but this can be problematic if you’re not careful about redirection and bookmarks. Also, it has not been possible for symmetric tools like WAN Optimization to be utilized in this environment. Virtual appliances like BIG-IP LTM VE are resolving that particular issue, extending much of the control you have in the datacenter out to the cloud. I’ve said before, the times are still changing, you’ll have to stay on top of the new issues that confront you as IT transforms yet again, trying to stay ahead of the curve. Related Blogs: Like Load Balancing WAN Optimization is a Feature of Application ... Is it time for a new Enterprise Architect? Virtual Infrastructure in Cloud Computing Just Passes the Buck The Cloud Computing – Application Acceleration Connection F5 Friday: Secure, Scalable and Fast VMware View Deployment Smart Energy Cloud? Sounds like fun. WAN Optimization is not Application Acceleration The Three Reasons Hybrid Clouds Will Dominate F5 Friday: BIG-IP WOM With Oracle Products Oracle Fusion Middleware Deployment Guides Introducing: Long Distance VMotion with VMWare Load Balancers for Developers – ADCs Wan Optimization Functionality Cloud Control Does Not Always Mean 'Do it yourself' Best Practices Deploying IBM Web Sphere 7 Now Available275Views0likes0CommentsUseful IT. Bringing Health Record Transfer into the 21st Century.
I read the Life as a Healthcare CIO blog on occasion, mostly because as a former radiographer, health care records integration and other non-diagnostic IT use in healthcare is a passing interest of mine. Within the last hospital I worked at the systems didn’t communicate – not even close, as in there was no effort to make them do so. This intrigues me, as since I’ve entered IT I have watched technology uptake in healthcare slowly ramp up at a great curve behind the rest of the business world. Oh make no mistake, technology has been in overdrive on the equipment used, but things like systems interoperability and utilizing technology to make doctors, nurses, and tech’s lives easier is just slower in the medical world. A huge chunk of the resistance is grounded in a very common sense philosophy. “When people’s lives are on the line you do not rush willy-nilly to the newest gadget.” No one in healthcare says it that way – at least not to my knowledge – but that’s the essence of what they think. I can think of a few businesses that could use that same mentality applied occasionally with a slightly different twist: “When the company’s viability is on the line…” but that’s a different blog. Even with this very common-sense resistance, there has been a steady acceleration of uptake in technology use for things like patient records and prescriptions. It has been interesting to watch, as someone on the outside with plenty of experience with the way hospitals worked and their systems were all silos. Healthcare IT is to be commended for things like electronic prescription pads and instant transfer of (now nearly all electronic) X-Rays to those who need them to care for the patient. Applying the “this can help with little impact on critical care” or even “this can help with positive impact on critical care and little risk of negative impact” viewpoint as a counter to the above-noted resistance has produced some astounding results. A friend of mine from my radiographer days is manager of a Cardiac Cath Lab, and talking with him is just fun. “Dude, ninety percent of the pups coming out of Radiology schools can’t set an exposure!” is evidence that diagnostic tools are continuing to take advantage of technology – in this case auto-detecting XRay exposure limits. He has more glowing things to say about the non-diagnostic growth of technology within any given organization. But outside the organization? Well that’s a completely different story. The healthcare organization wants to keep your records safe and intact, and rarely even want to let you touch them. That’s just a case of the “intact” bit. Some people might want their records to not contain some portion – like their blood alcohol level when brought to the ER – and some people might inadvertently lose some portion of the record. While they’re more than happy to send them on a referral, and willing to give you a copy if you’re seeking a second opinion, these records all have one archaic quality. Paper. If I want to buy a movie, I can go to netflix, sign up, and stream it (at least many of them) to watch. If I want my medical records transferred to a specialist so I can get treatment before my left eye oozes out of its socket, they have to be copied, verified, and mailed. If they’re short or my eye is on the verge of falling out right this instant, then they might be faxed. But the bulk of records are mailed. Even overnight is another day lost in the treatment cycle. Recently – the last couple of years – there has been a movement to replicate the records delivery process electronically. As time goes on, more and more of your medical records are being stored digitally. It saves room, time, and makes it easier for a doctor to “request” your record should he need it in a hurry. It also makes it easier to track accidental or even intentional changes in records. While it didn’t happen as often as fear-mongers and ambulance chasers want you to believe, of course there are deletions and misplacements in the medical records of the 300 million US citizens. An electronic system never forgets, so while something as simple as a piece of paper falling out of a record could forever change it, in electronic form that can’t happen. Even an intentional deletion can be “deleted” as in not show up, but still there, stored with your other information so that changes can be checked should the need ever arise. The inevitable off-shoot of electronic records is the ability to communicate them between hospitals. If you’re in the ER in Tulsa, and your normal doctor is in Manhattan, getting your records quickly and accurately could save your life. So it made sense that as the percentage of new records that were electronic grew, someone would start to put together a way to communicate them. No doubt you’re familiar with the debate about national health information databases, a centralized location for records is a big screaming target from many people’s perspectives, while it is a potentially life-saving technological advancement to others (they’re both right, but I think the infosec crowd has the stronger argument). But a smart group of people put together a project to facilitate doing electronically exactly what is being done today physically. The process is that the patient (or another doctor) requests the records be sent, they are pulled out, copied, mailed or faxed, and then a follow-up or “record received” communication occurs to insure that the source doctor got your records where they belong. Electronically this equates to the same thing, but instead of “selected” you get “looked up”, and instead of “mailed or faxed” you get “sent electronically”. There’s a lot more to it, but that’s the gist of The Direct Project. There are several reasons I got sucked into reading about this project. From a former healthcare worker’s perspective, it’s very cool to see non-diagnostic technology making a positive difference in healthcare, from a patient perspective, I would like the transfer of records to be as streamlined as possible, from the InfoSec perspective (I did a couple of brief stints in InfoSec), I like that it is not a massive database, but rather a “faster transit” mechanism, and from an F5 perspective, the possibilities for our gear to help make this viable were in my mind while reading. While Dr. Halamka has a lot of interesting stuff on his blog, this is one I followed the links and read the information about. It’s a pretty cool initiative, and what may seem very limiting in their scope assumptions holds true to the Direct Project’s idea of replacing the transfer mechanism and not creating a centralized database. While they’re not specifying formats to use during said transfer, they do list some recommended reading on that topic. What they do have is a registry of people who can receive records, and a system for transferring data over the wire. They worry about DNS-style health-care provider lookups, transfer protocols, and encryption, which is certainly a large enough chunk for them to bite off, and then they show how they fit into the larger nation-wide healthcare electronic records efforts going on. I hope they get it right, and the system they’re helping to build results in near-instantaneous secure records transfers, but many inventions are a product of the time and society in which they live, and even if The Direct Project fails, something like it will eventually succeed. If you’re in Healthcare IT, this is certainly a way to add value to the organization, and worth checking out. Meanwhile, I’m going to continue to delve into their work and the work of other organizations they’ve linked to and see if there isn’t a way F5 can help. After all, we can compress, dedupe, and encrypt communications on-the-wire, and the entire system is about on-the-wire communications, so it seems like a perfectly logical route to explore. Though the patient care guy in me will be reading up as much as the IT guy, because healthcare was a very rewarding field that seriously needed a bit more non-diagnostic technology when I was doing it.272Views1like0CommentsThe BYOD That is Real.
Not too long ago I wrote about VDI and BYOD, and how their hype cycles were impacting IT. In that article I was pretty dismissive of the corporate-wide democratization of IT through BYOD, and I stand by that. Internally, it is just not a realistic idea unless and until management toolsets converge. But that’s internally. Externally, we have a totally different world. If you run a website-heavy business like banking or sales, you’re going to have to deal with the proliferation of Internet enabled phones and tablets. Because they will hit your websites, and customers will expect them to work. Some companies – media companies tend to do a lot of this, for example – will ask you to download their app to view web pages. That’s ridiculous, just display the page. But some companies – again, banks are a good example – have valid reasons to want customers to use an app to access their accounts. The upshot is that any given app will have to support at least two platforms today, and that guarantees nothing a year from now. But it does not change the fact that one way or another, you’re going to have to support these devices over the web. There are plenty of companies out there trying to help you. Appcelerator offers a cross-platform development environment that translates from javascript into native Objective C or Java, for example. There are UI design tools available on the web that can output both formats but are notoriously short of source code and custom graphics. Still, good for prototyping. And the environments allow you to choose an HTML5 app, a native app, or a hybrid of the two, allowing staff to choose the best solution for the problem at hand. And then there is the network. It is not just a case of delivering a different format to the device, it is a case of optimizing that content for delivery to devices with smaller memory space, slower networks, and slower CPU speeds. That’s worth thinking about. There’s also the security factor. mobile devices are far easier to misplace than a desktop, and customers are not likely to admit their device is stolen until they’ve looked everywhere they might have left it. In the case (again) of financial institutions, if credentials are cached on the device, this is a recipe for disaster. So it is not only picking a platform and an application style, it is coding to the unique characteristics of the mobile world. Of course optimization is best handled at the network layer by products like our WebAccelerator, because it’s what they do and they’re very good at optimizing content based upon the target platform. Security, as usual, must be handled in several places. Checking that the device is not in a strange location (as I talked about here) is a good start, but not allowing username and password to be cached on the device is huge too. So while you are casting a skeptical look at BYOD inside your organization, pay attention to customers’ device preferences. They’re hitting the web on mobile devices more and more each month, and their view of your organization will be hugely impacted by how your site and/or apps respond. So invest the time and money, be there for them, so that they’ll come back to you. Or don’t. Your competitors would like that.260Views0likes0CommentsForce Multipliers and Strategic Points of Control Revisited
On occasion I have talked about military force multipliers. These are things like terrain and minefields that can make your force able to do their job much more effectively if utilized correctly. In fact, a study of military history is every bit as much a study of battlefields as it is a study of armies. He who chooses the best terrain generally wins, and he who utilizes tools like minefields effectively often does too. Rommel in the desert often used Wadis to hide his dreaded 88mm guns – that at the time could rip through any tank the British fielded. For the last couple of years, we’ve all been inundated with the story of The 300 Spartans that held off an entire army. Of course it was more than just the 300 Spartans in that pass, but they were still massively outnumbered. Over and over again throughout history, it is the terrain and the technology that give a force the edge. Perhaps the first person to notice this trend and certainly the first to write a detailed work on the topic was von Clausewitz. His writing is some of the oldest military theory, and much of it is still relevant today, if you are interested in that type of writing. For those of us in IT, it is much the same. He who chooses the best architecture and makes the most of available technology wins. In this case, as in a war, winning is temporary and must constantly be revisited, but that is indeed what our job is – keeping the systems at their tip-top shape with the resources available. Do you put in the tool that is the absolute best at what it does but requires a zillion man-hours to maintain, or do you put in the tool that covers everything you need and takes almost no time to maintain? The answer to that question is not always as simple as it sounds like it should be. By way of example, which solution would you like your bank to put between your account and hackers? Probably a different one than the one you would you like your bank to put in for employee timekeeping. An 88 in the desert, compliments of WW2inColor Unlike warfare though, a lot of companies are in the business of making tools for our architecture needs, so we get plenty of options and most spaces have a happy medium. Instead of inserting all the bells and whistles they inserted the bells and made them relatively easy to configure, or they merged products to make your life easier. When the terrain suits a commanders’ needs in wartime, the need for such force multipliers as barbed wire and minefields are eliminated because an attacker can be channeled into the desired defenses by terrain features like cliffs and swamps. The same could be said of your network. There are a few places on the network that are Strategic Points of Control, where so much information (incidentally including attackers, though this is not, strictly speaking, a security blog) is funneled through that you can increase your visibility, level of control, and even implement new functionality. We here at F5 like to talk about three of them… Between your users and the apps they access, between your systems and the WAN, and between consumers of file services and the providers of those services. These are places where you can gather an enormous amount of information and act upon that information without a lot of staff effort – force multipliers, so to speak. When a user connects to your systems, the strategic point of control at the edge of your network can perform pre-application-access security checks, route them to a VPN, determine the best of a pool of servers to service their requests, encrypt the stream (on front, back, or both sides), redirect them to a completely different datacenter or an instance of the application they are requesting that actually resides in the cloud… The possibilities are endless. When a user accesses a file, the strategic point of control between them and the physical storage allows you to direct them to the file no matter where it might be stored, allows you to optimize the file for the pattern of access that is normally present, allows you to apply security checks before the physical file system is ever touched, again, the list goes on and on. When an application like replication or remote email is accessed over the WAN, the strategic point of control between the app and the actual Internet allows you to encrypt, compress, dedupe, and otherwise optimize the data before putting it out of your bandwidth-limited, publicly exposed WAN connection. The first strategic point of control listed above gives you control over incoming traffic and early detection of attack attempts. It also gives you force multiplication with load balancing, so your systems are unlikely to get overloaded unless something else is going on. Finally, you get the security of SSL termination or full-stream encryption. The second point of control gives you the ability to balance your storage needs by scripting movement of files between NAS devices or tiers without the user having to see a single change. This means you can do more with less storage, and support for cloud storage providers and cloud storage gateways extends your storage to nearly unlimited space – depending upon your appetite for monthly payments to cloud storage vendors. The third force-multiplies the dollars you are spending on your WAN connection by reducing the traffic going over it, while offloading a ton of work from your servers because encryption happens on the way out the door, not on each VM. Taking advantage of these strategic points of control, architectural force multipliers offers you the opportunity to do more with less daily maintenance. For instance, the point between users and applications can be hooked up to your ADS or LDAP server and be used to authenticate that a user attempting to access internal resources from… Say… and iPad… is indeed an employee before they ever get to the application in question. That limits the attack vectors on software that may be highly attractive to attackers. There are plenty more examples of multiplying your impact without increasing staff size or even growing your architectural footprint beyond the initial investment in tools at the strategic point of control. For F5, we have LTM at the Application Delivery Network Strategic Point of Control. Once that investment is made, a whole raft of options can be tacked on – APM, WOM, WAM, ASM, the list goes on again (tired of that phrase for this blog yet?). Since each resides on LTM, there is only one “bump in the wire”, but a ton of functionality that can be brought to bear, including integration with some of the biggest names in applications – Microsoft, Oracle, IBM, etc. Adding business value like remote access for devices, while multiplying your IT force. I recommend that you check it out if you haven’t, there is definitely a lot to be gained, and it costs you nothing but a little bit of your precious time to look into it. No matter what you do, looking closely at these strategic points of control and making certain you are using them effectively to meet the needs of your organization is easy and important. The network is not just a way to hook users to machines anymore, so make certain that’s not all you’re using it for. Make the most of the terrain. And yes, if you also read Lori’s blog, we were indeed watching the same shows, and talking about this concept, so no surprise our blogs are on similar wavelengths. Related Blogs: What is a Strategic Point of Control Anyway? Is Your Application Infrastructure Architecture Based on the ... F5 Tech Field Day – Intro To F5 As A Strategic Point Of Control What CIOs Can Learn from the Spartans What We Learned from Anonymous: DDoS is now 3DoS What is Network-based Application Virtualization and Why Do You ... They're Called Black Boxes Not Invisible Boxes Service Virtualization Helps Localize Impact of Elastic Scalability F5 Friday: It is now safe to enable File Upload256Views0likes0CommentsLoad Balancing For Developers: Improving Application Performance With ADCs
If you’ve never heard of my Load Balancing For Developers series, it’s a good idea to start here. There are quite a few installments behind us, and I’m not going to look back in this post any more than I must to make it readable without going back… Meaning there’s much more detail back there than I’ll relate here. Again after a lengthy sojourn covering other points of interest, I return to Load Balancing For Developers with a more holistic view – application performance. Lori has talked a bit about this topic, and I’ve talked about it in the form of Load Balancing benefits and algorithms, but I’d like to look more architecturally again, and talk about those difficult to uncover performance issues that web apps often face. You’re the IT manager for the company’s Zap-n-Go website, it has grown nearly exponentially since launch, and you’re the one responsible for keeping it alive. Lately it’s online, but your users are complaining of sluggishness. Following the advice of some guy on the Internet, you put a load balancer in about a year ago, and things were better, but after you put in a redundant data center and Global Load Balancing services, things started to degrade again. Time to rethink your architecture before your product gets known as Zap-N-Gone… Again. Thus far you have a complete system with multiple servers behind an ADC in your primary data center, and a complete system with multiple servers behind an ADC in your secondary data center. Failover tests work correctly when you shut down the primary web servers, and the database at the remote location is kept up to date with something like Data Guard for Oracle or Merge Replication Services for SQL Server. This meets the business requirement that the remote database is up-to-date except for those transactions in-progress at the moment of loss. This makes you highly HA, and if your ADCs are running as an HA pair and your Global DNS – Like our GTM product - is smart enough to switch when it notices your primary site is down, most users won’t even know they’ve been shoved off to the backup datacenter. The business is happy, you’re sleeping at night, all is well. Except that slowly, as usage for the site has grown, performance has suffered. What started as a slight lag has turned into a dragging sensation. You’ve put more web servers into the pool of available resources – or better yet, used your management tools (in the ADC and on your servers) to monitor all facets of web server performance – disk and network I/O, CPU and memory utilization. And still, performance lags. Then you check on your WAN connection and database, and find the problem. Either the WAN connection is overloaded, or the database is waiting long periods of time for responses from the secondary datacenter. If you have things configured so that the primary doesn’t wait for acknowledgment from the secondary database, then your problem might be even more sinister – some transactions may never get deposited in the secondary datacenter, causing your databases to be out of synch. And that’s a problem because you need the secondary database to be as up to date as possible, but buying more bandwidth is a monthly overhead expense, and sometimes it doesn’t help – because the problem isn’t always about bandwidth, sometimes it is about latency. In fact, with synchronous real-time replication, it is almost always about latency. Latency, for those who don’t know, is a combination of how far your connection must travel over the wire and the number of “bumps in the wire” that have been inserted. Not actually the number of devices, but the number and their performance. Each device that touches your data – packet inspection, load balancing, security, whatever the reason – adds time to the delivery window. So does traveling over the wires/fiber. Synchronous replication is very time sensitive. If it doesn’t hear back in time, it doesn’t commit the changes, and then the primary and secondary databases don’t match up. So you need to cut down the latency and improve the performance of your WAN link. Conveniently, your ADC can help. Out-of-the-box it should have TCP optimizations that cut down the impact of latency by reducing the number of packets going back and forth over the wire. It may have compression too – which cuts down the amount of data going over the wire, reducing the number of packets required, which improves the “apparent” performance and the amount of data on your WAN connection. They might offer more functionality than that too. And you’ve already paid for an HA pair – putting one in each datacenter – so all you have to do is check what they do “out of the box” for WAN connections, and then call your sales representative to find out what other functionality is available. F5 includes some functionality in our LTM product, and has more in our add-on WAN Optimization Module (WOM) that can be bought and activated on your BIG-IP. Other vendors have a variety of architectures to offer you similar functionality, but of course I work for and write for F5, so my view is that they aren’t as good as our products… Certainly check with your incumbent vendor before looking for other solutions to this problem. We have seen cases where replication was massively improved with WAN Optimization. More on that in the coming days under a different topic, but just the thought that you can increase the speed and reliability of transaction-based replication (and indeed, file/storage replication, but again, that’s another blog), and you as a manager or a developer do not have to do a thing to your code. That implies the other piece – that this method of improvement is applicable to applications that you have purchased and do not own the source code for. So check it out… At worst you will lose a few hours tracking down your vendor’s options, at best you will be able to go back to sleep at night. And if you’re shifting load between datacenters, as I’ve mentioned before, Long Distance vMotion is improved by these devices too. F5’s architecture for this solution is here – PDF deployment guide. This guide relies upon the WOM functionality mentioned above. And encryption is supported between devices. That means if you are not encrypting your replication, that you can start without impacting performance, and if you are encrypting, you can offload the work of encryption to a device designed to handle it. And bandwidth allocation means you can guarantee your replication has enough bandwidth to stay up to date by giving it priority. But you won’t care too much about that, you’ll be relaxing and dreaming of beaches and stock options… Until the next emergency crops up anyway.255Views0likes0CommentsRandom Acts of Optimization.
When I first embarked on my application development career, I was a code optimization junky. Really, making things faster, more efficient, the tightest it could get was a big deal to me. That routine you wrote to solve a one-off problem often becomes the core routine used by applications across the infrastructure, so writing tight code was (to me) important. The industry obviously didn’t agree with me, since now we run mostly interpreted languages over the network, but that was then, this is now and all. The thing is that performance still matters, it has just changed location. The amount of overhead in the difference (in C/C++) between if() else and (x?y:z) is not so important anymore unless that particular instruction is being used a whole lot. The latency introduced to the network by all of those devices between server and client is far larger than the few clock cycles difference between these two instructions. There are still applications where optimized code really makes a difference (mostly in embedded, where all resources are less than even the tablet space), but with ever-shrinking form factors and increasing resources, even those instances are going away slowly but surely. The only place I’ve heard of that really needs a high level of source optimization in recent months is high-speed transactions in the financial services sector. Simply put, if your application is on the network, the organization will get more out of spending networking staff man-hours improving network performance than spending developer man-hours doing the same. There is still a lot of app optimization that needs to go on – databases are a notorious area where a great DBA can make your application many times faster – but the network is impacting the applications many times in its back-and-forth, and it is impacting all applications, including the ones you don’t have the source to. But there are a lot of pieces to application delivery optimization (ADO), and approaching it piecemeal has no better result than approaching application optimization piecemeal. Just because you put a load balancer in front of your server and fired up a few more VMs behind the load balancer to share the load does not mean that your application is optimized. In some instances, that is the best solution, but in most cases, a more thorough Application Delivery Network approach is required. Making the application more responsive by load balancing does not decrease the amount of data the application is sending over your Internet connection, does not optimize delivery of the application over the wire to make it faster on the client end, does not direct users to the geographically closest or least utilized datacenter/cloud, does not… Well, do a lot of things. Exactly the same as optimizing your applications’ code won’t help a bit if the database is the slowest part of the application. So I’ll recommend an holistic approach (I hate that phrase, but how else do you politely say “look at every friggin’ thing on your network”?), that focuses on application serving and application delivery. And if you’re in multiple datacenters with data having to traverse the Internet behind your application also, then back-end optimizations also. It’s not just about throwing more virtuals at the problem, and most of us know it at this point. The user experience is, in the end, what matters most, and there are plenty of places other than your app that can dog performance from the user perspective. Look into compression and caching, TCP optimizations, application specific delivery tweaks, back-end optimizations, and in some cases, code optimizations. check the performance hit that every device between your servers and the Internet introduces. Optimize everything. And, like writing tight code, it will become just the way you do things. Once it is ingrained that you check all the places your application performance can suffer, it’s less to worry about, because you’ll configure things with deployment. Call it DevOps if you will, but make it part of your normal deployment model and review things whenever there’s a change. It’s a complex beast, the enterprise network, and it’s not getting less so. Use templates (like F5’s iApps) to provision the network bits correctly for you. Taking the F5 example, there is an iApp for deploying SharePoint and a different one for Exchange. They take care of the breadth of issues that can speed delivery of each application. You just answer a few questions. I am unaware of any of our competitors having a similar solution, but it is only a question of time, so if you’re not an F5 customer, ask your sales representative what the timeline for delivery of similar functionality is. I’m not an expert on our competition, who knows, maybe they have rolled something out already. Even if not, you can make checklists much like F5 Application Guides and F5 Deployment Guides, then use them to train new employees and make certain you’ve set everything up to your liking. Generally speaking, faster is better on any given network, so optimization is something you’ll have to worry about even if you’re not thinking about it today. Hope this helps a little in understanding that there’s more to it than load balancing. But if not, at least I got to write about optimizing C source. Related Articles and Blogs: F5 Friday: F5 Application Delivery Optimization (ADO) The “All of the Above” Approach to Improving Application Performance Interop 2012 - Application Delivery Optimization with F5's Lori ... The Four V's of Big Data DevCentral Interviews | Audio - Application Delivery Controllers F5 News - Unified Application Delivery Intercloud: The Evolution of Global Application Delivery Audio White Paper - Application Delivery Hardware A Critical ... Who owns application delivery meta-data in the cloud? The Application Delivery Spell Book: Detect Invisible (Application ...255Views0likes0CommentsToll Booths and Dams. And Strategic Points of Control
An interesting thing about toll booths, they provide a point at which all sorts of things can happen. When you are stopped to pay a toll, it smooths the flow of traffic by letting a finite number of vehicles through per minute, reducing congestion by naturally spacing things out. Dams are much the same, holding water back on a river and letting it flow through at a rate determined by the operators of the dam. The really interesting bit is the other things that these two points introduce. When necessary, toll booths have been used to find and stop suspected criminals. They have also been used as advertising and information transmission points. None of the above are things toll booths were created for. They were created to collect tolls. And yet by nature of where they sit in the highway system, can be utilized for much more. The same is true of a dam. Dams today almost always generate electricity. Often they function as bridges over the very water they’re controlling. They control the migration of fish, and operate as a check on predatory invasive species. Again, none of these things is the primary reason dams were originally invented, but the nature of their location allows them to be utilized effectively in all of these roles. Toll booths - Wikipedia We’ve talked a bit about strategic points of control. They’re much like toll booths and dams in the sense that their location makes them key to controlling a whole lot of traffic on your LAN. In the case of F5’s defined strategic points of control, they all tie in to the history of F5’s product lineup much like a toll booth was originally to collect tolls. F5BIG-IPLTM sits at the network strategic point of control. Initially LTM was a load balancer, but by virtue of its location and the needs of customers has grown into one of the most comprehensive Application Delivery Controllers on the market – everything from security to uptime monitoring is facilitated by LTM. F5 ARX is much the same, being the file-based storage strategic point of control allows such things as directing some requests to cloud storage and others to storage by vendor A, while still others go to vendor B, and the remainder go to a Linux or Windows machine with a ton of free disk space on it. The WAN strategic point of control is where you can improve performance over the WAN via WOM, but it is also a place where you can extend LTM functionality to remote locations, including the cloud. Budgets for most organizations are not growing due to the state of the economy. Whether you’re government, public, private, or small business, you’ve been doing more with less for so long that doing more with the same would be a nice change. If you’re lucky, you’ll see growth in IT budgeting due to increasing needs of security and growth of application footprints. Some others will see essentially flat budgets, and many – including most government IT orgs - will see shrinking budgets. While that is generally bad news, it does give you the opportunity to look around and figure out how to make more effective use of existing technology. Yes, I have said that before, because you’re living that reality, so it is worth repeating. Since I work for F5, here are a few examples though, something I’ve not done before. From the network strategic point of control, we can help you with DNSSec, AAA, Application Security, Encryption, performance on several levels (from TCP optimizations to compression), HA, and even WAN optimization issues if needed. From the storage strategic point of control we can help you harness cloud storage, implement tiering, and balance load across existing infrastructure to help stave off expensive new storage purchases. Backups and replication can be massively improved (both in terms of time and data transferred) from this location also. We’re not the only vendor that can help you out without having to build a whole new infrastructure. It might be worthwhile to have a vendor day, where you invite vendors in to give presentations about how they can help – larger companies and the federal government do this regularly, you can do the same in a scaled down manner, and what sales person is going to tell you “no, we don’t want to come tell you how you can help and we can sell you more stuff”? Really? Another option is, as I’ve said in the past, make sure you know not just the functionality you are using, but the capabilities of the IT gear, software, and services that you already have in-house. Chances are there are cost savings by using existing functionality of an existing product, with time being your only expense. That’s not free, but it’s about as close as IT gets. Hoover Dam from the air - Wikipedia So far we in IT have been lucky, the global recession hasn’t hit our industry as hard as it has hit most, but it has constricted our ability to spend big, so little things like those above can make a huge difference. Since I am on a computer or Playbook for the better part of 16 hours a day, hitting websites maintained by people like you, I can happily say that you all rock. A highly complex, difficult to manage set of variables rarely produces a stable ecosystem like we have. No matter how good the technology, in the end it is people who did that, and keep it that way. You all rock. And you never know, but you might just find the AllSpark hidden in the basement ;-).253Views0likes0Comments