owasp-top-10-api-access
6 TopicsOWASP Tactical Access Defense Series: Broken Function Level Authorization (BFLA)
Broken Function Level Authorization (BFLA) is a type of security vulnerability in web applications where an attacker can access functionality or perform actions they should not be authorized to perform. This problem happens when an application doesn’t check access control on functions or endpoints correctly. This lets users do things that are not allowed. In this article, we are going through API5 item from OWASP Top 10 API Security risks and exploring F5 BIG-IP Access Policy Manager (APM) as a role in our arsenal Let’s consider our test application for each retail agent to submit their sales data, but without the ability to retrieve any from the system. In HTTP terms, the retail agent can POST but not allowed to perform GET, while the manager can perform GET to check agents performance, and collected data. Mitigating Risks with BIG-IP APM BIG-IP APM per-request granularity: with per-request granularity, organizations can dynamically enforce access policies based on various factors such as user identity, device characteristics, and contextual information. This enables organizations to implement fine-grained access controls at the API level, mitigating the risks associated with Broken Function Level Authorization. Key Features: Dynamic Access Control Policies: BIG-IP APM empowers organizations to define dynamic access control policies that adapt to changing conditions in real-time. By evaluating each API request against these policies, BIG-IP APM ensures that authorized users can only perform specific authorized functions (actions) on specified resources. Granular Authorization Rules: BIG-IP APM enables organizations to define granular authorization rules that govern access to individual objects or resources within the API ecosystem. By enforcing strict permission checks at the object level, F5 BIG-IP APM prevents unauthorized functions. Related Content F5 BIG-IP Access Policy Manager | F5 Introduction to OWASP API Security Top 10 2023 OWASP Top 10 API Security Risks – 2023 - OWASP API Security Top 10 API Protection Concepts OWASP Tactical Access Defense Series: How BIG-IP APM Strengthens Defenses Against OWASP Top 10 OWASP Tactical Access Defense Series: Broken Object-Level Authorization and BIG-IP APM F5 Hybrid Security Architectures (Part 5 - F5 XC, BIG-IP APM, CIS, and NGINX Ingress Controller) OWASP Tactical Access Defense Series: Broken Authentication and BIG-IP APM OWASP Tactical Access Defense Series: Broken Object Property-Level Authorization and BIG-IP APM OWASP Tactical Access Defense Series: Unrestricted Resource Consumption176Views1like0CommentsOWASP Tactical Access Defense Series: Unrestricted Resource Consumption
Unrestricted resource consumption occurs when an API does not adequately limit or control the consumption of its resources, such as CPU, memory, disk space, network bandwidth, or database connections. This lack of control can lead to resource exhaustion and denial of service (DoS) conditions. In this article, we are going through API4 item from OWASP top 10 API Security risks exploring F5 BIG-IP Access Policy Manager (APM) role in our arsenal. Identify Vulnerable APIs It's common to find APIs that do not limit client interactions or resource consumption. APIs can affect different backend endpoint resources: Control number of resources returned. Infer extra costs on service providers' business/pricing model. exhuast resources CPU, memory, disk space or network connections. Common examples of this vulnerability: Allowing excessively large payloads in requests. Permitting unbounded loops or deep recursion in API processing logic. Lack of rate limiting, which could allow attackers to overwhelm the API with too many requests. Insufficient control over the creation and management of server-side sessions. Out of the Shadows: API Discovery and Securitypresents an incredible way to secure APIs via F5 Distributed Cloud (F5 XC). In our article we focus on access capabilities, which can be highlighted here in rate limiting the requests associated with a specific user/machine. Mitigating Risks with BIG-IP APM BIG-IP APM per-request granularity. With per-request granularity, organizations can dynamically enforce access policies based on various factors such as user identity, device characteristics, and contextual information. This enables organizations to implement fine-grained access controls at the API level, mitigating the risks associated with Unrestricted Resources Consumption. Key Features: Dynamic Access Control Policies: BIG-IP APM empowers organizations to define dynamic access control policies that adapt to changing conditions in real-time. By evaluating each API request against these policies, BIG-IP APM ensures that only authorized users can access specific resources and perform permitted actions. Granular Authorization Rules: BIG-IP APM enables organizations to define granular authorization rules that govern access to individual objects or resources within the API ecosystem. By enforcing strict authorization checks at the object level, F5 APM prevents unauthorized users from tampering with sensitive data or performing unauthorized actions. Apply rate limiting to APIs based on initiator identity, which provides a great way to protect while maintaining the service for legitimate users. Related Content F5 BIG-IP Access Policy Manager | F5 Introduction to OWASP API Security Top 10 2023 OWASP Top 10 API Security Risks – 2023 - OWASP API Security Top 10 API Protection Concepts OWASP Tactical Access Defense Series: How BIG-IP APM Strengthens Defenses Against OWASP Top 10 OWASP Tactical Access Defense Series: Broken Object Level Authorization and BIG-IP APM F5 Hybrid Security Architectures (Part 5 - F5 XC, BIG-IP APM, CIS, and NGINX Ingress Controller) OWASP Tactical Access Defense Series: Broken Authentication and BIG-IP APM OWASP Tactical Access Defense Series: Broken Object Property Level Authorization and BIG-IP APM121Views0likes0CommentsOWASP Tactical Access Defense Series: Broken Object Property Level Authorization and BIG-IP APM
AUTHOR NOTE: Unauthorized access to private/sensitive object properties may result in data disclosure, data loss, or data corruption. Under certain circumstances, unauthorized access to object properties can lead to privilege escalation or partial/full account takeover. In this article we are going through API3 item from OWASP top 10 API Security risks exploring BIG-IP Access Policy Manager (APM) role in our arsenal. Identifying Vulnerable APIs In order to identify the API endpoint is vulnerable to Broken Object Property Level Authorization, Sensitive properties exposure of certain object for non-intended user (Excessive Data Exposure). import requests # Assuming the API endpoint for retrieving user data is /api/users api_endpoint = "https://example.com/api/users" # Sending a GET request to the API endpoint response = requests.get(api_endpoint) # Checking if the request was successful (status code 200) if response.status_code == 200: # Printing the response content (which could contain excessive data) print(response.json()) else: print("Failed to retrieve data from the API") API allow to change, add or delete sensitive object property for non-intended user (Mass assignment). import requests # Assuming the API endpoint for updating user information is /api/users api_endpoint = "https://example.com/api/users" # Malicious payload containing additional fields malicious_payload = { "username": "malicious_user", "password": "password123", "isAdmin": True # Malicious user attempts to elevate privileges } # Sending a POST request with the malicious payload response = requests.post(api_endpoint, json=malicious_payload) # Checking if the request was successful (status code 200) if response.status_code == 200: print("User information updated successfully") else: print("Failed to update user information") Object Property Level Authorization involves controlling access to specific properties or attributes of an object within a system. Instead of granting blanket access to an entire object, this approach enables fine-grained control, allowing administrators to restrict or permit access to individual properties based on user roles or permissions. While implementing protection against such security risk involves different aspects, one is making sure the user is authorized to access object property, and here BIG-IP APM plays crucial role. Mitigating Risks with BIG-IP APM BIG-IP APM per-request granularity. With per-request granularity, organizations can dynamically enforce access policies based on various factors such as user identity, device characteristics, and contextual information. This enables organizations to implement fine-grained access controls at the API level, mitigating the risks associated with Broken Object Property Level Authorization. Key Features: Dynamic Access Control Policies: BIG-IP APM empowers organizations to define dynamic access control policies that adapt to changing conditions in real-time. By evaluating each API request against these policies, BIG-IP APM ensures that only authorized users can access specific resources and perform permitted actions. Granular Authorization Rules: BIG-IP APM enables organizations to define granular authorization rules that govern access to individual objects or resources within the API ecosystem. By enforcing strict authorization checks at the object level, F5 APM prevents unauthorized users from tampering with sensitive data or performing unauthorized actions. Conclusion In conclusion, BIG-IP APM per-request granularity is a powerful tool for defending against Broken Object-Level Authorization vulnerabilities in APIs. By enforcing fine-grained access controls at the API level, organizations can mitigate the risks associated with unauthorized access to sensitive data. Additionally, proactive security assessments and vulnerability scans are essential for identifying and addressing vulnerabilities in APIs, thereby strengthening overall security posture in the digital ecosystem. Related Content F5 BIG-IP Access Policy Manager | F5 Introduction to OWASP API Security Top 10 2023 OWASP Top 10 API Security Risks – 2023 - OWASP API Security Top 10 API Protection Concepts OWASP Tactical Access Defense Series: How BIG-IP APM Strengthens Defenses Against OWASP Top 10 OWASP Tactical Access Defense Series: Broken Object Level Authorization and BIG-IP APM F5 Hybrid Security Architectures (Part 5 - F5 XC, BIG-IP APM, CIS, and NGINX Ingress Controller) OWASP Tactical Access Defense Series: Broken Authentication and BIG-IP APM269Views1like0CommentsOWASP Tactical Access Defense Series: Broken Authentication and BIG-IP APM
The threat of broken authentication poses a significant risk to organizations, potentially leading to unauthorized access and data breaches. In the face of this formidable challenge, F5's Access Policy Manager (APM) emerges as a robust and indispensable solution. By seamlessly integrating advanced authentication mechanisms and comprehensive access controls, F5 BIG-IP APM stands as a stalwart guardian against the vulnerabilities associated with broken authentication. This article explores the pivotal role played by BIG-IP APM in fortifying authentication protocols, mitigating risks, and ensuring a resilient defense against unauthorized access, ultimately safeguarding the integrity and security of sensitive data in today's dynamic digital environment. Broken Authentication Broken Authentication Examples BIG-IP APM and Broken Authentication Related Content Broken Authentication Authentication mechanism is an exposed target due to the nature of this function, as authentication is the first point of entry to any platform. The difficulty to exploit authentication weaknesses differs based on how the authentication platform is secured. In the current digital era the security perimeters are very fluid, and so are the trust boundries for our authentication platforms those require more cautions from the developers and security architects regarding authentication flows. Not only we need to protect authentication endpoints and flows, but also some overlooked items like forget and reset password endpoints. How can we consider endpoint to be vulnerable? Credential stuffing. Brute force attacks targetting users' accounts. Weak Passwords. Sensitive details in the URL (passwords, Tokens). Allow users sensitive actions without confirmation. No validation for the tokens authenticity. Accept unsigned or weak jwt tokens. No validation for jwt expiration. Use of plain-text, non-encrypted or non-hashed passwords. Use of weak encryption algorithms. Endpoint can access each other without proper authentication. Use weak or predictable tokens for intra-endpoint authentication. Broken Authentication Examples Making use of GraphQL query patching to bypass API ratelimiting and brute force user's login. POST /graphql [ {"query":"mutation{login(username:\"victim\",password:\"password\"){token}}"}, {"query":"mutation{login(username:\"victim\",password:\"123456\"){token}}"}, {"query":"mutation{login(username:\"victim\",password:\"qwerty\"){token}}"}, ... {"query":"mutation{login(username:\"victim\",password:\"123\"){token}}"}, ] Update / modify user's sensitive information without API authorization token. PUT /account Authorization: Bearer <token> { "newpassword": "<new_password>" } BIG-IP APM and Broken Authentication We start with creating our Per-Request policy, this policy works in a different way than the per-session policy, as the flow will be evaluted on a per-request basis, making sure to consider variations throught the session life-time. Below are some of the key benefits: Wide range of Authentication, SSO, and MFA mechanisms to properly identify the initiating machine or user. Ability to integrate with 3rd parties to provide additional enforcement decisions based on the organization's policy. Ability to apply endpoint checks on the client side before session initiation. This goes to BIG-IP in general, the ability to apply custom traffic control on both of the traffic sides, Client and Server. The ability to create whitelist / blacklist for API Access tokens, JSON Web Tokens ID (JTI) or a different element based on the used authentication method, below example steps for JWT: Extract JTI value from Access token. Add JTI value to whether Allow/Block lists. Related Content F5 BIG-IP Access Policy Manager | F5 Introduction to OWASP API Security Top 10 2023 OWASP Top 10 API Security Risks – 2023 - OWASP API Security Top 10 API Protection Concepts OWASP Tactical Access Defense Series: How BIG-IP APM Strengthens Defenses Against OWASP Top 10 OWASP Tactical Access Defense Series: Broken Object Level Authorization and BIG-IP APM F5 Hybrid Security Architectures (Part 5 - F5 XC, BIG-IP APM, CIS, and NGINX Ingress Controller)318Views2likes0CommentsOWASP Tactical Access Defense Series: How BIG-IP APM Strengthens Defenses Against OWASP Top 10
In an era where cyber threats loom large, safeguarding digital assets has become paramount. Among the vanguard of defenders stands the F5 BIG-IP Access Policy Manager (APM), a stalwart guardian against the notorious OWASP Top 10 vulnerabilities. In this article, we embark on a journey through the tactical strategies employed by BIG-IP APM, unraveling how it reinforces the fortifications against these pervasive threats. From dynamic access controls to multifaceted authentication protocols, BIG-IP APM stands as a beacon of resilience in the face of evolving security challenges. Join us as we delve into the intricacies of BIG-IP APM's role in shoring up defenses, ensuring your digital landscape remains a fortress impervious to OWASP's formidable arsenal. OWASP The OWASP (Open Web Application Security Project) API (Application Programmable Interface) Security project aims to help the organizations by providing a guide with a list of the latest top 10 most critical API vulnerabilities and steps to mitigate them. As part of updating the old OWASP API Security risk categories of 2019, recently OWASP API Security Top 10 2023 is released. Introduction to OWASP API Security Top 10 2023 lists the updated top 10 list and the explanation for each one, in our series we focus more on the access related items. BIG-IP APM Within the realm of access security, BIG-IP APM emerges as a pivotal player, offering more than just session awareness and enforcement capabilities. Its unique strength lies in its capability to handle per-request calls, providing an unprecedented level of granularity in securing API endpoints. BIG-IP APM's prowess extends beyond session management; it boasts per-request awareness, enforcing rigorous authentication and authorization protocols on API requests directed towards safeguarded endpoints. This distinctive feature ensures robust protection for your digital assets. As we delve deeper into this series of articles, we'll uncover how BIG-IP APM significantly bolsters your defense strategy in addressing the critical challenges outlined in the OWASP top 10 API vulnerabilities. Stay engaged to explore the comprehensive capabilities of BIG-IP APM and how it plays a pivotal role in fortifying your security posture against these formidable threats. Related Content F5 BIG-IP Access Policy Manager | F5 OWASP Tactical Access Defense Series: Broken Object Level Authorization and BIG-IP APM Introduction to OWASP API Security Top 10 2023 OWASP Top 10 API Security Risks – 2023 - OWASP API Security Top 10696Views6likes1CommentOWASP Tactical Access Defense Series: Broken Object Level Authorization and BIG-IP APM
Addressing Broken Object Level Authorization (BOLA) vulnerabilities requires a multifaceted approach, combining robust coding practices, secure development methodologies, and powerful tools. Among these tools, F5 BIG-IP Access Policy Manager (APM) stands out as a crucial component in the arsenal of security measures. This article, the second in a series of articles dedicated to fortifying application security, delves into the pivotal role that BIG-IP APM plays in identifying, mitigating, and ultimately preventing OWASP top 10 API vulnerabilities byproviding developers and security professionals with a comprehensive guide to bolstering application security in the face of evolving cyber threats. Broken Object Level Authorization This is one of the most common and severe vulnerabilities within APIs and is related to Insecure Direct Object References (IDOR). Starting with, what's Object Level Authorization? This is an access control mechanism that's in place to validate which user has access to a specific endpoint and what actions to be performed. BOLA and IDOR refer to situations where the endpoints fail to enforce specific authorization rules on endpoints, or the user is successfully able to access unauthorized endpoints and perform unauthorized actions. The weakness that can lead to this vulnerability is the server component fails to track client state and rely on other parameters that can be tweaked from the client side, for example (Cookies, object IDs). BOLA Example Let's assume this backend directory, - /uploads/ - user1/ - file1.txt - file2.txt - user2/ - file3.txt - file4.txt The expected user1 usage is as follows, https://example.com/viewfile?file=file1.txt the user can access file1. If the server is vulnerable to BOLA, let's have user2 accessing the server, then try to navigate to file1 as follows, https://example.com/viewfile?file=user1/file1.txt What could help us in this situation? Yes, we need granular endpoint authorization with proper client state tracking. That's where our lovely friend BIG-IP APM comes into the picture. Let's see how BIG-IP APM can help us. BIG-IP APM and BOLA protection BIG-IP APM provides API protection through its Per-Request policy, where the it applies granular Access protection to each API endpoint. How BIG-IP APM enhancesdefenses We start with creating our Per-Request policy, this policy works in a different way than the per-session policy, as the flow will be evaluted on a per-request basis, making sure to consider variations throught the session life-time. Below are some of the key benefits: Wide range of Authentication, SSO, and MFA mechanisms to properly identify the initiating machine or user. Ability to integrate with 3rd parties to provide additional enforcement decisions based on the organization's policy. Ability to apply endpoint checks on the client side before session initiation. This goes to BIG-IP in general, the ability to apply custom traffic control on both of the traffic sides, Client and Server. Using BIG-IP API protection profile. Protection profiles are an easy way to deploy both APM (Per-Request policy) and Advanced Web Application Firewall (AWAF). As a pre-requisite, you need APM, AWAF licensed and provisioned. Use OpenAPI Spec 2.0 as an input to the API protection. Apply different Authentication methods, whether Basic, Oauth (Directly from the template), or once we have the API protection profile created, we can customize policy elements to our needs. Using Hybrid approach with F5 Distributed Cloud (F5 XC) + BIG-IP APM We had this approach discussed in details through F5Hybrid Security Architectures (Part 5 - F5 XC, BIG-IP APM, CIS, and NGINX Ingress Controller) Stay engaged to explore the comprehensive capabilities of BIG-IP APM and how it plays a pivotal role in fortifying your security posture against these formidable threats. Related Content F5 BIG-IP Access Policy Manager | F5 Introduction to OWASP API Security Top 10 2023 OWASP Top 10 API Security Risks – 2023 - OWASP API Security Top 10 API Protection Concepts OWASP Tactical Access Defense Series: How BIG-IP APM Strengthens Defenses Against OWASP Top 10 F5 Hybrid Security Architectures (Part 5 - F5 XC, BIG-IP APM, CIS, and NGINX Ingress Controller)565Views3likes0Comments