nginx
61 TopicsThe Ingress NGINX Alternative: F5 NGINX Ingress Controller for the Long Term
The Kubernetes community recently announced that Ingress NGINX will be retired in March 2026. After that date, there won’t be any more new updates, bugfixes, or security patches. ingress-nginx is no longer a viable enterprise solution for the long-term, and organizations using it in production should move quickly to explore alternatives and plan to shift their workloads to Kubernetes ingress solutions that are continuing development. Your Options (And Why We Hope You’ll Consider NGINX) There are several good Ingress controllers available—Traefik, HAProxy, Kong, Envoy-based options, and Gateway API implementations. The Kubernetes docs list many of them, and they all have their strengths. Security start-up Chainguard is maintaining a status-quo version of ingress-nginx and applying basic safety patches as part of their EmeritOSS program. But this program is designed as a stopgap to keep users safe while they transition to a different ingress solution. F5 maintains an OSS permissively licensed NGINX Ingress Controller. The project is open source, Apache 2.0 licensed, and will stay that way. There is a team of dedicated engineers working on it with a slate of upcoming upgrades. If you’re already comfortable with NGINX and just want something that works without a significant learning curve, we believe that the F5 NGINX Ingress Controller for Kubernetes is your smoothest path forward. The benefits of adopting NGINX Ingress Controller open source include: Genuinely open source: Apache 2.0 licensed with 150+ contributors from diverse organizations, not just F5. All development happens publicly on GitHub, and F5 has committed to keeping it open source forever. Plus community calls every 2 weeks. Minimal learning curve: Uses the same NGINX engine you already know. Most Ingress NGINX annotations have direct equivalents, and the migration guide provides clear mappings for your existing configurations. Supported annotations include popular ones such as nginx.org/client-body-buffer-size mirrors nginx.ingress.kubernetes.io/client-body-buffer-size (sets the maximum size of the client request body buffer). Also available in VirtualServer and ConfigMap. nginx.org/rewrite-target mirrors nginx.ingress.kubernetes.io/rewrite-target (sets a replacement path for URI rewrites) nginx.org/ssl-ciphers mirrors nginx.ingress.kubernetes.io/ssl-ciphers (configures enabled TLS cipher suites) nginx.org/ssl-prefer-server-cipher mirrors nginx.ingress.kubernetes.io/ssl-prefer-server-ciphers (controls server-side cipher preference during the TLS handshake) Optional enterprise-grade capabilities: While the OSS version is robust, NGINX Plus integration is available for enterprises needing high availability, authentication and authorization, session persistence, advanced security and commercial support Sustainable maintenance: A dedicated full-time team at F5 ensures regular security updates, bug fixes, and feature development. Production-tested at scale: NGINX Ingress Controller powers approximately 40% of Kubernetes Ingress deployments with over 10 million downloads. It’s battle-tested in real production environments. Kubernetes-native design: Custom Resource Definitions (VirtualServer, Policy, TransportServer) provide cleaner configuration than annotation overload, with built-in validation to prevent errors. Advanced capabilities when you need them: Support for canary deployments, A/B testing, traffic splitting, JWT validation, rate limiting, mTLS, and more—available in the open source version. Future-proof architecture: Active development of NGINX Gateway Fabric provides a clear migration path when you’re ready to move to Gateway API. NGINX Gateway Fabric is a conformant Gateway API solution under CNCF conformance criteria and it is one of the most widely used open source Gateway API solutions. Moving to NGINX Ingress Controller Here’s a rough migration guide. You can also check our more detailed migration guide on our documentation site. Phase 1: Take Stock See what you have: Document your current Ingress resources, annotations, and ConfigMaps Check for snippets: Identify any annotations like: nginx.ingress.kubernetes.io/configuration-snippet Confirm you're using it: Run kubectl get pods --all-namespaces --selector app.kubernetes.io/name=ingress-nginx Set it up alongside: Install NGINX Ingress Controller in a separate namespace while keeping your current setup running Phase 2: Translate Your Config Convert annotations: Most of your existing annotations have equivalents in NGINX Ingress Controller - there's a comprehensive migration guide that maps them out Consider VirtualServer resources: These custom resources are cleaner than annotation-heavy Ingress, and give you more control, but it's your choice Or keep using Ingress: If you want minimal changes, it works fine with standard Kubernetes Ingress resources Handle edge cases: For anything that doesn't map directly, you can use snippets or Policy resources Phase 3: Test Everything Try it with test apps: Create some test Ingress rules pointing to NGINX Ingress Controller Run both side-by-side: Keep both controllers running and route test traffic through the new one Verify functionality: Check routing, SSL, rate limiting, CORS, auth—whatever you're using Check performance: Verify it handles your traffic the way you need Phase 4: Move Over Gradually Start small: Migrate your less-critical applications first Shift traffic slowly: Update DNS/routing bit by bit Watch closely: Keep an eye on logs and metrics as you go Keep an escape hatch: Make sure you can roll back if something goes wrong Phase 5: Finish Up Complete the migration: Move your remaining workloads Clean up the old controller: Uninstall community Ingress NGINX once everything's moved Tidy up: Remove old ConfigMaps and resources you don't need anymore Enterprise-grade capabilities and support Once an ingress layer becomes mission-critical, enterprise features become necessary. High availability, predictable failover, and supportability matter as much as features. Enterprise-grade capabilities available for NGINX Ingress Controller Plus include high availability, authentication and authorization, commercial support, and more. These ensure production traffic remains fast, secure, and reliable. Capabilities include: Commercial support Backed by vendor commercial support (SLAs, escalation paths) for production incidents Access to tested releases, patches, and security fixes suitable for regulated/enterprise environments Guidance for production architecture (HA patterns, upgrade strategies, performance tuning) Helps organizations standardize on a supported ingress layer for platform engineering at scale Dynamic Reconfiguration Upstream configuration updates via API without process reloads Eliminates memory bloat and connection timeouts as upstream server lists and variables are updated in real time when pods scale or configurations change Authentication & Authorization Built-in authentication support for OAuth 2.0 / OIDC, JWT validation, and basic auth External identity provider integration (e.g., Okta, Azure AD, Keycloak) via auth request patterns JWT validation at the edge, including signature verification, claims inspection, and token expiry enforcement Fine-grained access control based on headers, claims, paths, methods, or user identity Optional Web Application Firewall Native integration with F5 WAF for NGINX for OWASP Top 10 protection, gRPC schema validation, and OpenAPI enforcement DDoS mitigation capabilities when combined with F5 security solutions Centralized policy enforcement across multiple ingress resources High availability (HA) Designed to run as multiple Ingress Controller replicas in Kubernetes for redundancy and scale State sharing: Maintains session persistence, rate limits, and key-value stores for seamless uptime. Here’s the full list of differences between NGINX Open Source and NGINX One – a package that includes NGINX Plus Ingress Controller, NGINX Gateway Fabric, F5 WAF for NGINX, and NGINX One Console for managing NGINX Plus Ingress Controllers at scale. Get Started Today Ready to begin your migration? Here's what you need: 📚 Read the full documentation: NGINX Ingress Controller Docs 💻 Clone the repository: github.com/nginx/kubernetes-ingress 🐳 Pull the image: Docker Hub - nginx/nginx-ingress 🔄 Follow the migration guide: Migrate from Ingress-NGINX to NGINX Ingress Controller Interested in the enterprise version? Try NGINX One for free and give it a whirl The NGINX Ingress Controller community is responsive and full of passionate builders -- join the conversation in the GitHub Discussions or the NGINX Community Forum. You’ve got time to plan this migration right, but don’t wait until March 2026 to start.31Views0likes0CommentsOverview of MITRE ATT&CK Tactic - TA0002 Execution
Introduction: Execution refers to the methods adversaries use to run malicious code on a target system. This tactic includes a range of techniques designed to execute payloads after gaining access to the network. It is a key stage in the attack lifecycle, as it allows attackers to activate their malicious actions, such as deploying malware, running scripts, or exploiting system vulnerabilities. Successful execution can lead to deeper system control, enabling attackers to perform actions like data theft, system manipulation, or establishing persistence for future exploitation. Now, let’s dive into the various techniques under the Execution tactic and explore how attackers use them. 1. T1651: Cloud Administration Command: Cloud management services can be exploited to execute commands within virtual machines. If an attacker gains administrative access to a cloud environment, they may misuse these services to run commands on the virtual machines. Furthermore, if an adversary compromises a service provider or a delegated administrator account, they could also exploit trusted relationships to execute commands on connected virtual machines. 2. T1059: Command and Scripting Interpreter The misuse of command and script interpreters allows adversaries to execute commands, scripts, or binaries. These interfaces, such as Unix shells on macOS and Linux, Windows Command Shell, and PowerShell are common across platforms and provide direct interaction with systems. Cross-platform interpreters like Python, as well as those tied to client applications (e.g., JavaScript, Visual Basic), can also be misused. Attackers may embed commands and scripts in initial access payloads or download them later via an established C2 (Command and Control) channel. Commands may also be executed via interactive shells or through remote services to enable remote execution. (.001) PowerShell: As PowerShell is already part of Windows, attackers often exploit it to execute commands discreetly without triggering alarms. It’s often used for things like finding information, moving across networks, and running malware directly in memory. This helps avoid detection because nothing is written to disk. Attackers can also execute PowerShell scripts without launching the powershell.exe program by leveraging.NET interfaces. Tools like Empire, PowerSploit, and PoshC2 make it even easier for attackers to use PowerShell for malicious purposes. Example - Remote Command Execution (.002) AppleScript: AppleScript is an macOS scripting language designed to control applications and system components through inter-application messages called AppleEvents. These AppleEvent messages can be sent by themselves or with AppleScript. They can find open windows, send keystrokes, and interact with almost any open application, either locally or remotely. AppleScript can be executed in various ways, including through the command-line interface (CLI) and built-in applications. However, it can also be abused to trigger actions that exploit both the system and the network. (.003) Windows Command Shell: The Windows Command Prompt (CMD) is a lightweight, simple shell on Windows systems, allowing control over most system aspects with varying permission levels. However, it lacks the advanced capabilities of PowerShell. CMD can be used from a distance using Remote Services. Attackers may use it to execute commands or payloads, often sending input and output through a command-and-control channel. Example - Remote Command Execution (.004) Unix Shell: Unix shells serve as the primary command-line interface on Unix-based systems. They provide control over nearly all system functions, with certain commands requiring elevated privileges. Unix shells can be used to run different commands or payloads. They can also run shell scripts to combine multiple commands as part of an attack. Example - Remote Command Execution (.005) Visual Basic: Visual Basic (VB) is a programming language developed by Microsoft, now considered a legacy technology. Visual Basic for Applications (VBA) and VBScript are derivatives of VB. Malicious actors may exploit VB payloads to execute harmful commands, with common attacks, including automating actions via VBScript or embedding VBA content (like macros) in spear-phishing attachments. (.006) Python: Attackers often use popular scripting languages, like Python, due to their interoperability, cross-platform support, and ease of use. Python can be run interactively from the command line or through scripts that can be distributed across systems. It can also be compiled into binary executables. With many built-in libraries for system interaction, such as file operations and device I/O, attackers can leverage Python to download and execute commands, scripts, and perform various malicious actions. Example - Code Injection (.007) JavaScript: JavaScript (JS) is a platform-independent scripting language, commonly used in web pages and runtime environments. Microsoft's JScript and JavaScript for Automation (JXA) on macOS are based on JS. Adversaries exploit JS to execute malicious scripts, often through Drive-by Compromise or by downloading scripts as secondary payloads. Since JS is text-based, it is often obfuscated to evade detection. Example - XSS (.008) Network Device CLI: Network devices often provide a CLI or scripting interpreter accessible via direct console connection or remotely through telnet or SSH. These interfaces allow interaction with the device for various functions. Adversaries may exploit them to alter device behavior, manipulate traffic, load malicious software by modifying configurations, or disable security features and logging to avoid detection. (.009) Cloud API: Cloud APIs offer programmatic access to nearly all aspects of a tenant, available through methods like CLIs, in-browser Cloud Shells, PowerShell modules (e.g., Azure for PowerShell), or SDKs for languages like Python. These APIs provide administrative access to major services. Malicious actors with valid credentials, often stolen, can exploit these APIs to perform malicious actions. (.010) AutoHotKey & AutoIT: AutoIT and AutoHotkey (AHK) are scripting languages used to automate Windows tasks, such as clicking buttons, entering text, and managing programs. Attackers may exploit AHK (.ahk) and AutoIT (.au3) scripts to execute malicious code, like payloads or keyloggers. These scripts can also be embedded in phishing payloads or compiled into standalone executable files (.011) Lua: Lua is a cross-platform scripting and programming language, primarily designed for embedding in applications. It can be executed via the command-line using the standalone Lua interpreter, through scripts (.lua), or within Lua-embedded programs. Adversaries may exploit Lua scripts for malicious purposes, such as abusing or replacing existing Lua interpreters to execute harmful commands at runtime. Malware examples developed using Lua include EvilBunny, Line Runner, PoetRAT, and Remsec. (.012) Hypervisor CLI: Hypervisor CLIs offer extensive functionality for managing both the hypervisor and its hosted virtual machines. On ESXi systems, tools like “esxcli” and “vim-cmd” allow administrators to configure and perform various actions. Attackers may exploit these tools to enable actions like File and Directory Discovery or Data Encrypted for Impact. Malware such as Cheerscrypt and Royal ransomware have leveraged this technique. 3. T1609: Container Administration Command Adversaries may exploit container administration services, like the Docker daemon, Kubernetes API server, or kubelet, to execute commands within containers. In Docker, attackers can specify an entry point to run a script or use docker exec to execute commands in a running container. In Kubernetes, with sufficient permissions, adversaries can gain remote execution by interacting with the API server, kubelet, or using commands like kubectl exec within the cluster. 4. T1610: Deploy Container Containers can be exploited by attackers to run malicious code or bypass security measures, often through the use of harmful processes or weak settings, such as missing network rules or user restrictions. In Kubernetes environments, attackers may deploy containers with elevated privileges or vulnerabilities to access other containers or the host node. They may also use compromised or seemingly benign images that later download malicious payloads. 5. T1675: ESXi Administration Command ESXi administration services can be exploited to execute commands on guest machines within an ESXi virtual environment. ESXi-hosted VMs can be remotely managed via persistent background services, such as the VMware Tools Daemon Service. Adversaries can perform malicious activities on VMs by executing commands through SDKs and APIs, enabling follow-on behaviors like File and Directory Discovery, Data from Local System, or OS Credential Dumping. 6. T1203: Exploitation for Client Execution Adversaries may exploit software vulnerabilities in client applications to execute malicious code. These exploits can target browsers, office applications, or common third-party software. By exploiting specific vulnerabilities, attackers can achieve arbitrary code execution. The most valuable exploits in an offensive toolkit are often those that enable remote code execution, as they provide a pathway to gain access to the target system. Example: Remote Code Execution 7. T1674: Input Injection Input Injection involves adversaries simulating keystrokes on a victim’s computer to carry out actions on their behalf. This can be achieved through several methods, such as emulating keystrokes to execute commands or scripts, or using malicious USB devices to inject keystrokes that trigger scripts or commands. For example, attackers have employed malicious USB devices to simulate keystrokes that launch PowerShell, enabling the download and execution of malware from attacker-controlled servers. 8. T1559: Inter-Process Communication Inter-Process Communication (IPC) is commonly used by processes to share data, exchange messages, or synchronize execution. It also helps prevent issues like deadlocks. However, IPC mechanisms can be abused by adversaries to execute arbitrary code or commands. The implementation of IPC varies across operating systems. Additionally, command and scripting interpreters may leverage underlying IPC mechanisms, and adversaries might exploit remote services—such as the Distributed Component Object Model (DCOM)—to enable remote IPC-based execution. (.001) Component Object Model (Windows): Component Object Model (COM) is an inter-process communication (IPC) mechanism in the Windows API that allows interaction between software objects. A client object can invoke methods on server objects via COM interfaces. Languages like C, C++, Java, and Visual Basic can be used to exploit COM interfaces for arbitrary code execution. Certain COM objects also support functions such as creating scheduled tasks, enabling fileless execution, and facilitating privilege escalation or persistence. (.002) Dynamic Data Exchange (Windows): Dynamic Data Exchange (DDE) is a client-server protocol used for one-time or continuous inter-process communication (IPC) between applications. Adversaries can exploit DDE in Microsoft Office documents—either directly or via embedded files—to execute commands without using macros. Similarly, DDE formulas in CSV files can trigger unintended operations. This technique may also be leveraged by adversaries on compromised systems where direct access to command or scripting interpreters is restricted. (.003) XPC Services(macOS): macOS uses XPC services for inter-process communication, such as between the XPC Service daemon and privileged helper tools in third-party apps. Applications define the communication protocol used with these services. Adversaries can exploit XPC services to execute malicious code, especially if the app’s XPC handler lacks proper client validation or input sanitization, potentially leading to privilege escalation. 9. T1106: Native API Native APIs provide controlled access to low-level kernel services, including those related to hardware, memory management, and process control. These APIs are used by the operating system during system boot and for routine operations. However, adversaries may abuse native API functions to carry out malicious actions. By using assembly directly or indirectly to invoke system calls, attackers can bypass user-mode security measures such as API hooks. Also, attackers may try to change or stop defensive tools that track API use by removing functions or changing sensor behavior. Many well-known exploit tools and malware families—such as Cobalt Strike, Emotet, Lazarus Group, LockBit 3.0, and Stuxnet—have leveraged Native API techniques to bypass security mechanisms, evade detection, and execute low-level malicious operations. 10. T1053: Scheduled Task/Job This technique involves adversaries abusing task scheduling features to execute malicious code at specific times or intervals. Task schedulers are available across major operating systems—including Windows, Linux, macOS, and containerized environments—and can also be used to schedule tasks on remote systems. Adversaries commonly use scheduled tasks for persistence, privilege escalation, and to run malicious payloads under the guise of trusted system processes. (.002) At: The “At” utility is available on Windows, Linux, and macOS for scheduling tasks to run at specific times. Adversaries can exploit “At” to execute programs at system startup or on a set schedule, helping them maintain persistence. It can also be misused for remote execution during lateral movement or to run processes under the context of a specific user account. In Linux environments, attackers may use “At “to break out of restricted environments, aiding in privilege escalation. (.003) Cron: The “cron” utility is a time-based job scheduler used in Unix-like operating systems. The “crontab” file contains scheduled tasks and the times at which they should run. These files are stored in system-specific file paths. Adversaries can exploit “cron” in Linux or Unix environments to execute programs at startup or on a set schedule, maintaining persistence. In ESXi environments, “cron” jobs must be created directly through the “crontab” file. (.005) Scheduled Task: Adversaries can misuse Windows Task Scheduler to run programs at startup or on a schedule, ensuring persistence. It can also be exploited for remote execution during lateral movement or to run processes under specific accounts (e.g., SYSTEM). Similar to System Binary Proxy Execution, attackers may hide one-time executions under trusted system processes. They can also create "hidden" tasks that are not visible to defender tools or manual queries. Additionally, attackers may alter registry metadata to further conceal these tasks. (.006) Systemd Timers: Systemd timers are files with a .timer extension used to control services in Linux, serving as an alternative to Cron. They can be activated remotely via the systemctl command over SSH. Each .timer file requires a corresponding .service file. Adversaries can exploit systemd timers to run malicious code at startup or on a schedule for persistence. Timers placed in privileged paths can maintain root-level persistence, while user-level timers can provide user-level persistence. (.007) Container Orchestration Job: Container orchestration jobs automate tasks at specific times, similar to cron jobs on Linux. These jobs can be configured to maintain a set number of containers, helping persist within a cluster. In Kubernetes, a CronJob schedules a Job that runs containers to perform tasks. Adversaries can exploit CronJobs to deploy Jobs that execute malicious code across multiple nodes in a cluster. 11. T1648: Serverless Execution Cloud providers offer various serverless resources such as compute functions, integration services, and web-based triggers that adversaries can exploit to execute arbitrary commands, hijack resources, or deploy functions for further compromise. Cloud events can also trigger these serverless functions, potentially enabling persistent and stealthy execution over time. An example of this is Pacu, a well-known open-source AWS exploitation framework, which leverages serverless execution techniques. 12. T1229: Shared Modules Shared modules are executable components loaded into processes to provide access to reusable code, such as custom functions or Native API calls. Adversaries can abuse this mechanism to execute arbitrary payloads by modularizing their malware into shared objects that perform various malicious functions. On Linux and macOS, the module loader can load shared objects from any local path. On Windows, the loader can load DLLs from both local paths and Universal Naming Convention (UNC) network paths. 13. T1072: Software Deployment Tools Adversaries may exploit centralized management tools to execute commands and move laterally across enterprise networks. Access to endpoint or configuration management platforms can enable remote code execution, data collection, or destructive actions like wiping systems. SaaS-based configuration management tools can also extend this control to cloud-hosted instances and on-premises systems. Similarly, configuration tools used in network infrastructure devices may be abused in the same way. The level of access required for such activity depends on the system’s configuration and security posture. 14. T1569: System Services System services and daemons can be abused to execute malicious commands or programs, whether locally or remotely. Creating or modifying services allows execution of payloads for persistence—particularly if set to run at startup—or for temporary, one-time actions. (.001) Launchctl (MacOS): launchctl interacts with launchd, the service management framework for macOS. It supports running subcommands via the command line, interactively, or from standard input. Adversaries can use launchctl to execute commands and programs as Launch Agents or Launch Daemons, either through scripts or manual commands. (.002) Service Execution (Windows): The Windows Service Control Manager (services.exe) manages services and is accessible through both the GUI and system utilities. Tools like PsExec and sc.exe can be used for remote execution by specifying remote servers. Adversaries may exploit these tools to execute malicious content by starting new or modified services. This technique is often used for persistence or privilege escalation. (.003) Systemctl (Linux): systemctl is the main interface for systemd, the Linux init system and service manager. It is typically used from a shell but can also be integrated into scripts or applications. Adversaries may exploit systemctl to execute commands or programs as systemd services. 15. T1204: User Execution Users may be tricked into running malicious code by opening a harmful file or link, often through social engineering. While this usually happens right after initial access, it can occur at other stages of an attack. Adversaries might also deceive users to enable remote access tools, run malicious scripts, or coercing users to manually download and execute malware. Tech support scams often use phishing, vishing, and fake websites, with scammers spoofing numbers or setting up fake call centers to steal access or install malware. (.001) Malicious Link: Users may be tricked into clicking on a link that triggers code execution. This could also involve exploiting a browser or application vulnerability (Exploitation for Client Execution). Additionally, links might lead users to download files that, when executed, deliver malware file. (.002) Malicious File: Users may be tricked into opening a file that leads to code execution. Adversaries often use techniques like masquerading and obfuscating files to make them appear legitimate, increasing the chances that users will open and execute the malicious file. (.003) Malicious Image: Cloud images from platforms like AWS, GCP, and Azure, as well as popular container runtimes like Docker, can be backdoored. These compromised images may be uploaded to public repositories and users might unknowingly download and deploy an instance or container, bypassing Initial Access defenses. Adversaries may also use misleading names to increase the chances of users mistakenly deploying the malicious image. (.004) Malicious Copy and Paste: Users may be deceived into copying and pasting malicious code into a Command or Scripting Interpreter. Malicious websites might display fake error messages or CAPTCHA prompts, instructing users to open a terminal or the Windows Run Dialog and run arbitrary, often obfuscated commands. Once executed, the adversary can gain access to the victim's machine. Phishing emails may also be used to trick users into performing this action. 16. T1047: Windows Management Instrumentation WMI (Windows Management Instrumentation) is a tool designed for programmers, providing a standardized way to manage and access data on Windows systems. It serves as an administrative feature that allows interaction with system components. Adversaries can exploit WMI to interact with both local and remote systems, using it to perform actions such as gathering information for discovery or executing commands and payloads. How F5 can help? F5 security solutions like WAF (Web Application Firewall), API security, and DDoS mitigation protect the applications and APIs across platforms including Clouds, Edge, On-prem or Hybrid, thereby reducing security risks. F5 bot and risk management solutions can also stop bad bots and automation. This can make your modern applications safer. The example attacks mentioned under techniques can be effectively mitigated by F5 products like Distributed Cloud, BIG-IP and NGINX. Here are a few links which explain the mitigation steps. Mitigating Cross-Site Scripting (XSS) using F5 Advanced WAF Mitigating Struts2 RCE using F5 BIG-IP For more details on the other mitigation techniques of MITRE ATT&CK Execution Tactic TA0002, please reach out to your local F5 team. Reference Links: MITRE ATT&CK® Execution, Tactic TA0002 - Enterprise | MITRE ATT&CK® MITRE ATT&CK: What It Is, How it Works, Who Uses It and Why | F5 Labs519Views3likes0CommentsF5 NGINX Plus R36 Release Now Available
We’re thrilled to announce the availability of F5 NGINX Plus Release 36 (R36). NGINX Plus R36 adds advanced capabilities like an HTTP CONNECT forward proxy, richer OpenID Connect (OIDC) abilities, expanded ACME options, and new container images packaged with popular modules. In addition, NGINX Plus inherits all the latest capabilities from NGINX Open Source, the only all-in-one software web server, load balancer, reverse proxy, content cache, and API gateway. Here’s a summary of the most important updates in R36: HTTP CONNECT Forward Proxy NGINX Plus can now tunnel HTTP traffic via the HTTP CONNECT method, making it easy to centralize egress policies through a trusted NGINX Plus server. Advanced features enable capabilities that limit proxied traffic to specific origin clients, ports, or destination hosts and networks. Native OIDC Support for PKCE, Front-Channel Logout, and POST Client Authentication We’ve made additional enhancements to the popular OpenID Connect module by adding support for PKCE enforcement, the ability to log out of all applications a client was signed in to, and support for authenticating the OIDC client using the client_secret_post method. ACME Enhancements for Certificate Automation Certificate automation capabilities are more powerful than ever, as we continue to make improvements to the ACME (Automatic Certificate Management Environment) module. New features include support for the TLS-ALPN-01 challenge method, the ability to select a specific certificate chain, IP-based certificates, ACME profiles, and external account bindings. TLS Certificate Compression High-volume or high-latency connections can now benefit from a new capability that optimizes TLS handshakes by compressing certificates and associated CA chains. Container Images with Popular Modules Container images now include our most popular modules, making it even easier to deploy NGINX Plus in container environments. Alongside the previously included njs module, images now ship with the ACME, OpenTelemetry Tracing, and Prometheus Exporter modules. Key features inherited from NGINX Open Source include: Support for 0-RTT in QUIC Inheritance control for headers and trailers Support for OpenSSL 3.5 New Features in Detail HTTP CONNECT Forward Proxy NGINX Plus R36 adds native HTTP CONNECT support via a new ngx_http_tunnel_module that enables NGINX Plus to operate as a forward proxy for outbound HTTP/HTTPS traffic. You can restrict clients, ports, and hosts, as well as which networks are reachable via centralized egress policies. This new capability allows you to monitor outbound connections through one or more NGINX Plus instances instead of relying on separate proxy products or DIY open source projects. Why it matters Enforces consistent egress policies without introducing another proxy to your stack. Centralizes proxy rules and threat monitoring for outbound connections. Reduces the need for custom modules or sidecar proxies to tunnel outbound TLS. Who it helps Platform and network teams that must route all outbound traffic through a controlled proxy. Security teams that want a single place to enforce and audit egress rules. Operators consolidating L7 functions (inbound and outbound) on NGINX Plus. The following is a sample forward proxy configuration that filters ports, destination hosts and networks. Note the requirement to specify a DNS resolver. For simplicity, we've configured a popular, publicly available DNS. However, doing so is not recommended for certain production environments, due to access limitations and unpredictable availability. num_map $request_port $allowed_ports { 443 1; 8440-8445 1; } geo $upstream_last_addr $allowed_nets { 52.58.199.0/24 1; 3.125.197.172/24 1; } map $host $allowed_hosts { hostnames; nginx.org 1; *.nginx.org 1; } server { listen 3128; resolver 1.1.1.1; # unsafe tunnel_allow_upstream $allowed_nets $allowed_ports $allowed_hosts; tunnel_pass; } Native OpenID Connect Support for PKCE, Front-Channel Logout, and POST Client Authentication R36 extends the native OIDC features introduced in R34 with PKCE enforcement, front-channel logout, and support for authenticating clients via the client_secret_post method. PKCE for authorization code flow can now be auto-enabled for a configured Identity Provider when S256 is advertised for “code_challenge_methods_supported” in federated metadata. Alternatively, it can be explicitly toggled with a simple directive: pkce on; # force PKCE even if the OP does not advertise it pkce off; # disable PKCE even if the OP advertises S256 A new front-channel logout endpoint lets an Identity Provider trigger a browser-based sign-out of all applications that a client is signed in to. oidc_provider okta_app { issuer https://dev.okta.com/oauth2/default; client_id <client_id>; client_secret <client_secret>; logout_uri /logout; logout_token_hint on; frontchannel_logout_uri /front_logout; userinfo on; } Support for client_secret_post improves compatibility with identity providers that require POST-based client authentication per OpenID Connect Core 1.0. Why it matters Brings NGINX Plus in line with modern identity provider expectations that treat PKCE as a best practice for all authorization code flows. Enables reliable logout across multiple applications from a single identity provider trigger. Makes NGINX Plus easier to integrate with providers that insist on POST-based client authentication. Who it helps Identity access management and security teams standardizing on OIDC and PKCE. Application and API owners who need consistent login and logout behavior across many services. Architects integrating with cloud identity providers (Entra ID, Okta, etc.) that require specific OIDC patterns. ACME Enhancements for Certificate Automation Building on the ACME support shipped in our previous release, NGINX Plus R36 incorporates new features from the nginx acme project, including: TLS-ALPN-01 challenge support Selection of a specific certificate chain IP-based certificates ACME profiles External account bindings These capabilities align NGINX Plus with what is available in NGINX Open Source via the ngx_http_acme_module. Why it matters Lets you keep more of the certificate lifecycle inside NGINX instead of relying on external tooling. Makes it easier to comply with CA policies and organizational PKI standards. Supports more complex environments such as IP-only endpoints and specific chain requirements. Who it helps SRE and platform teams running large fleets that rely on automated certificate renewal. Security and PKI teams that need tighter control over certificate chains, profiles, and CA bindings. Operators who want to standardize on a single ACME implementation across NGINX Plus and NGINX Open Source. TLS Certificate Compression TLS certificate compression introduced in NGINX Open Source 1.29.1 is now available in NGINX Plus R36. The ssl_certificate_compression directive controls certificate compression during TLS handshakes, which remains off by default and must be explicitly enabled. Why it matters Reduces the size of TLS handshakes when certificate chains are large. Can optimize performance in high connection volume or high-latency environments. Offers incremental performance optimization without changing application behavior. Who it helps Performance-focused operators running services with many short-lived TLS connections. Teams supporting mobile or high-latency clients where every byte in the handshake matters. Operators who want to experiment with handshake optimizations while retaining control via explicit configuration. Container Images with Popular Modules Included Finally, NGINX Plus R36 introduces container images that bundle NGINX Plus with commonly requested first-party modules such as OpenTelemetry (OTel) Tracing, ACME, Prometheus Exporter, and NGINX JavaScript (njs). Options include images with or without F5 NGINX Agent and those running NGINX in privileged or unprivileged mode. Additionally, a slim NGINX Plus–only image will be made available for teams who prefer to build bespoke custom containers. Additional Enhancements Available in NGINX Plus R36 Upstream-specific request headers Dynamically assigned proxy_bind pools Changes Inherited from NGINX Open Source NGINX Plus R36 is based on the NGINX 1.29.3 mainline release and inherits all functional changes, features, and bug fixes made since NGINX Plus R35 was released (which was based on the 1.29.0 mainline release). For the full list of new changes, features, bug fixes, and workarounds inherited from recent releases, see the NGINX changes . Changes to Platform Support Added Platforms Support for the following platforms has been added: Debian 13 Rocky Linux 10 SUSE Linux Enterprise Server 16 Removed Platforms Support for the following platforms has been removed: Alpine Linux 3.19 – Reached End of Support in November 2025 Deprecated Platforms Support for the following platforms will be removed in a future release: Alpine Linux 3.20 Important Warning NGINX Plus is built on the latest minor release of each supported operating system platform. In many cases, the latest revisions of these operating systems are adapting their platforms to support OpenSSL 3.5 (e.g. RHEL 9.7 and 10.1). In these situations, NGINX Plus requires that OpenSSL 3.5.0 or later is installed for proper operation. F5 NGINX in F5’s Application Delivery & Security Platform NGINX One is part of F5’s Application Delivery & Security Platform. It helps organizations deliver, improve, and secure new applications and APIs. This platform is a unified solution designed to ensure reliable performance, robust security, and seamless scalability for applications deployed across cloud, hybrid, and edge architectures. NGINX One is the all-in-one, subscription-based package that unifies all of NGINX’s capabilities. NGINX One brings together the features of NGINX Plus, F5 NGINX App Protect, and NGINX Kubernetes and management solutions into a single, easy-to-consume package. NGINX Plus, a key component of NGINX One, adds features to NGINX Open Source that are designed for enterprise-grade performance, scalability, and security. Follow this guide for more information on installing and deploying NGINX Plus R36 or NGINX Open Source.586Views1like0CommentsManage Thousands of F5 NGINX Ingress VirtualServerRoutes with Kustomize
NGINX Ingress VirtualServerRoutes require maintaining route files AND manually updating VirtualServer references - a dual-maintenance problem that doesn't scale. This tutorial automates the integration so you only manage route files, and everything else is generated automatically.336Views2likes2CommentsVIPTest: Rapid Application Testing for F5 Environments
VIPTest is a Python-based tool for efficiently testing multiple URLs in F5 environments, allowing quick assessment of application behavior before and after configuration changes. It supports concurrent processing, handles various URL formats, and provides detailed reports on HTTP responses, TLS versions, and connectivity status, making it useful for migrations and routine maintenance.1.1KViews5likes2CommentsNGINX Plus R35 for Federal Environments: FIPS-Compliant algorithms with ACME Certificates in AWS
NGINX Plus R35 offers a fantastic combination of built-in ACME support and also supports using FIPS-compliant cryptographic algorithms. This guide walks through configuring a setup of Nginx to use Let's Encrypt for automatic certificate generation and renewal with FIPS approved algorithms. I should clarify that if you do not want to use FIPS approved algorithms, it is very simple to change the cipher suite lines to meet your particular needs.222Views1like0CommentsModern Deployment and Security Strategies for Kubernetes with NGINX Gateway Fabric
Kubernetes has become the foundation for cloud-native applications. However, managing and routing traffic within clusters remains a challenging issue. The traditional Ingress resource, though helpful in exposing services, has shown limitations. Its loosely defined specifications often cause controller-specific behaviors, complicated annotations, and hinder portability across different environments. These challenges become even more apparent as organizations scale their microservices architectures. Ingress was designed primarily for basic service exposure and routing. While it can be extended with annotations or custom controllers, it lacks first-class support for advanced deployment patterns such as canary or blue-green releases. This forces teams to rely on add-ons or vendor-specific features, which adds complexity and reduces portability.358Views1like0CommentsUsing F5 NGINX Plus as the Ingress Controller within Nutanix Kubernetes Platform (NKP)
Managing incoming traffic is a critical component of running applications efficiently within Kubernetes clusters. As organizations continue to deploy a growing number of microservices, the need for robust, flexible, and intelligent traffic management solutions becomes more apparent. In this article, we provide an overview of how F5 NGINX Plus, when used as the ingress controller in the Nutanix Kubernetes Platform (NKP), offers a comprehensive approach to traffic optimization, application reliability, and security.330Views1like0Comments