identity
32 TopicsThe Top 10, Top Predictions for 2012
Around this time of year, almost everyone and their brother put out their annual predictions for the coming year. So instead of coming up with my own, I figured I’d simply regurgitate what many others are expecting to happen. Security Predictions 2012 & 2013 - The Emerging Security Threat – SANS talks Custom Malware, IPv6, ARM hacking and Social Media. Top 7 Cybersecurity Predictions for 2012 - From Stuxnet to Sony, a number of cyberattacks emerged in 2011 that experts have predicted for quite some time. Webroot’s top seven forecasts for the year ahead. Zero-day targets and smartphones are on this list. Top 8 Security Predictions for 2012 – Fortinet’s Security Predictions for 2012. Sponsored attacks and SCADA Under the Scope. Security Predictions for 2012 - With all of the crazy 2011 security breaches, exploits and notorious hacks, what can we expect for 2012? Websense looks at blended attacks, social media identity and SSL. Top 5 Security Predictions For 2012 – The escalating change in the threat landscape is something that drives the need for comprehensive security ever-forward. Firewalls and regulations in this one. Gartner Predicts 2012 – Special report addressing the continuing trend toward the reduction of control IT has over the forces that affect it. Cloud, mobile, data management and context-aware computing. 2012 Cyber Security Predictions – Predicts cybercriminals will use cyber-antics during the U.S. presidential election and will turn cell phones into ATMs. Top Nine Cyber Security Trends for 2012 – Imperva’s predictions for the top cyber security trends for 2012. DDoS, HTML 5 and social media. Internet Predictions for 2012 – QR codes and Flash TOP 15 Internet Marketing Predictions for 2012 – Mobile SEO, Social Media ROI and location based marketing. Certainly not an exhaustive list of all the various 2012 predictions including the doomsday and non-doomsday claims but a good swath of what the experts believe is coming. Wonder if anyone predicted that Targeted attacks increased four-fold in 2011. ps Technorati Tags: F5, cyber security, predictions, 2012, Pete Silva, security, mobile, vulnerabilities, crime, social media, hacks, the tube, internet, identity theft4.7KViews0likes1CommentGot a SSN I can Borrow?
Apparently, I can use my own name and your Social Security Number to get a job or buy a car and it is not an identity theft crime. Really. This is according to a recent Colorado Supreme Court ruling. They ruled that, ‘that using someone else’s Social Security number is not identity theft as long as you use your own name with it.’ Seriously. The case in question involved a man who used his real name but someone else’s Social Security number to obtain a car loan. The court said that since he used his real name, along with other identifiable pieces of information, he wasn’t trying to impersonate someone else. The SSN info was just the ‘lender’s’ requirement and not a ‘legal’ requirement. The defendant said that he fully intended to pay the loan back and wasn’t trying to avoid the bills. There was another case where a man used a fake SSN to get a job at a steel plant in Illinois. He presented a Social Security card with his name but a fake SSN. Since he didn’t know that the number was fake and belonged to another person, the US Supreme Court ruled that he also didn’t break any federal ID theft laws since he did not ‘knowingly’ use another person’s number. He just ‘borrowed’ it. He could have just written 9 random numbers that may or may not have been tied to someone’s identity or he could have bought it from a broker, not knowing it was either fake or stolen. These decisions contradicted previous rulings in Missouri, California, the Midwest, the Southeast and many other regions. It also left folks scratching their heads wondering just what were the courts thinking. Their logic is that, ‘(The suspect) claimed that the government could not prove that he knew that the numbers on the counterfeit documents were numbers assigned to other people….The question is whether the statute requires the government to show that the defendant knew that the ‘means of identification’ he or she unlawfully transferred, possessed, or used, in fact, belonged to ‘another person.’ We conclude that it does.’ I understand that there is a fine legal line between malicious intent and an uninformed accident but if you make up a number or obtain it by improper means, it’s still fake, false and fraudulent. I also understand that there are criminal organizations that prey on immigrants who might not fully understand the ramifications and are told that it is legitimate. We’ve all, at some point, been lured, duped or convinced that something we were obtaining was the real thing. We’re told with great conviction that it is authentic and because we want to believe, we do. When the truth is exposed, the ‘I didn’t know’ defense is obviously the most common and very well might be the honest answer. Maybe because I focus on Information Security and a bit skeptical myself, I also gotta believe that there’s that little nudge, intuition or feeling in your belly telling you that something isn’t right. I know because I’ve ignored that gut-check and got burned. Just because something is ‘not-illegal’ does not make it the right thing to do. I’m not claiming to be a Mr. Goody-Two-Shoes and have certainly made my fair share of mistakes along with doing things I know to be wrong, legal or not. I also know that always acting in the ‘proper’ way or doing the ‘right’ thing is difficult sometimes. That’s what makes us human. We might seek the easiest, least complicated and sometimes slightly unethical way of accomplishing something. Sometimes we have to break the law to ensure the safety of others – like speeding to the Emergency Room if your wife is giving birth or a person is bleeding to death – but those are extenuating circumstances and doesn’t necessarily cause harm to others; unless, of course, you run somebody over on the way to the hospital. There are victims with this SSN borrowing since the real person may not ever know that their information was used since it won’t show up on a credit report. The trouble starts when a loan or tax payment is missed and by then, it’s too late. The courts have had difficulty over the years trying to interpret certain laws as technology whizzes by but, at least in the States, our Social Security Number is one of our unique, primary identifiers and should be protected. Incidentally, BIG-IP ASM does have a cool feature called Data Guard that can mask sensitive data from being leaked from the web application. Data Guard helps protect against information leakage like the leakage of credit card or Social Security numbers. Instead of sending the actual data to the client, ASM can respond by replacing the sensitive data with asterisks, or block the response and sending out an alert. You can also decide what ASM should consider as sensitive: credit card numbers, Social Security numbers, or responses that contain a specific pattern. ps twitter: @psilvas4.6KViews0likes1CommentSocial Login to Enterprise Apps using BIG-IP & OAuth 2.0
Password fatigue is something we’ve all experienced at some point. Whether it’s due to breaches and the ever present, ‘update password’ warnings, the corporate policy of a 90-day rotation or simply registering for a website with yet another unique username and password. Social login or social sign-in allows people to use their existing Google, Twitter, Facebook, LinkedIn or other social credentials to enter a web property, rather than creating a whole new account for the site. These can be used to authenticate, verify identity or to allow posting of content to social networks and the main advantage is convenience and speed. With v13, BIG-IP APM offers a rich set of OAuth capabilities allowing organizations to implement OAuth Client, OAuth Resource Server and OAuth Authorization Server roles to implement social logins. Let's look at BIG-IP’s capabilities (from the user's perspective) as an OAuth Client, OAuth Resource Server. We’ll navigate to our BIG-IP login screen and immediately you’ll notice it looks slightly different than your typical APM login. Here, you now have a choice and can authenticate using any one of the 4 external resources. Azure AD Enterprise and AD B2C along with Google and Facebook. Google and Facebook are very popular social login choices - as shown in the initial image above - where organizations are looking to authenticate the users and allow them to authorize the sharing of information that Google and Facebook already have, with the application. In this case, we have an application behind BIG-IP that is relying on getting such information from an external third party. For this, we’ll select Facebook. When we click logon, BIG-IP will redirect to the Facebook log into screen. Now we’ll need to log into Facebook using our own personal information. And with that, Facebook has authenticated us and has sent BIG-IP critical info like name, email and other parameters. BIG-IP has accepted the OAuth token passed to it from Facebook, extracted the info from the OAuth scope and now the application knows my identity and what resources I’m authorized to access. We can do the same with Google. Select the option, click logon and here we’re redirected to the Google authentication page. Here again, we enter our personal credentials and arrive at the same work top. Like Facebook, Google sent an authorization code to BIG-IP, BIG-IP validated it, extracted the username from the OAuth scope, passed it to the backend application so the application knows who I am and what I can access. Let's look at Microsoft. For Microsoft, we can authenticate using a couple editions of Azure AD – Enterprise and B2C. Let’s see how Enterprise works. Like the others, we get redirected to Microsoftonline.com to enter our MS Enterprise credentials. In this instance, we’re using an account that’s been Federated to Azure AD from another BIG-IP and we’ll authenticate to that BIG-IP. At this point that BIG-IP will issue a SAML assertion to Azure AD to authenticate me to Azure AD. After that, Azure AD will issue an OAuth token to that BIG-IP. BIG-IP will accept it, extract the user information and pass it to the application. Finally, let’s see how Azure AD B2C works. B2C is something that companies can use to store their non-corporate user base. Folks like partners, suppliers, contractors, etc. B2C allows users to maintain their own accounts and personal information. In addition, they can login using a typical Microsoft account or a Google account. In this case, we’ll simply use a Microsoft account and are directed to the Microsoft authentication page. We’ll enter our personal info, the servers communicate and we’re dropped into our WebTop of resources. Social logins can not only help enterprises offer access to certain resources, it also improves the overall customer experience with speed and convenience and allows organizations to capture essential information about their online customers. ps Related: What are social logins? The Most Popular Social Logins Globally [Infographic] Understanding the Benefits of Social Login – How does it add value to your website?778Views0likes0CommentsComplying with PCI DSS–Part 5: Regularly Monitor and Test Networks
According to the PCI SSC, there are 12 PCI DSS requirements that satisfy a variety of security goals. Areas of focus include building and maintaining a secure network, protecting stored cardholder data, maintaining a vulnerability management program, implementing strong access control measures, regularly monitoring and testing networks, and maintaining information security policies. The essential framework of the PCI DSS encompasses assessment, remediation, and reporting. We’re exploring how F5 can help organizations gain or maintain compliance and today is Regularly Monitor and Test Networks which includes PCI Requirements 10 and 11. To read Part 1, click: Complying with PCI DSS–Part 1: Build and Maintain a Secure Network, Part 2:Complying with PCI DSS–Part 2: Protect Cardholder Data, Part 3: Complying with PCI DSS–Part 3: Maintain a Vulnerability Management Program and Part 4: Complying with PCI DSS–Part 4: Implement Strong Access Control Measures. Requirement 10: Track and monitor all access to network resources and cardholder data. PCI DSS Quick Reference Guide description: Logging mechanisms and the ability to track user activities are critical for effective forensics and vulnerability management. The presence of logs in all environments allows thorough tracking and analysis if something goes wrong. Determining the cause of a compromise is very difficult without system activity logs. Solution: The spirit of this requirement is to ensure appropriate systems generate logs, with implementation and monitoring of log aggregation and correlation systems. The ability to monitor and log all user sessions and requests for access to sensitive information, such as cardholder data and Social Security numbers, is critical to any security environment. F5 offers a suite of solutions that are session-based, not packet-based. With this full reverse proxy architecture, the BIG-IP platform has the ability to manage full user sessions, regardless of the transport mechanism or network, and match those user sessions to specific data actions, supplying log data and a full audit trail from the user to the data. This allows F5 application security devices to ensure the confidentiality, integrity, and availability of all application data on the network. All F5 products support remote logging, allowing logs to be pushed to secure networks and devices for archiving. In addition, the TMOS architecture can manage isolated, secure logging networks in conjunction with the application networks, using features such as mirrored ports, VLANs, and virtualized administrative access. Protecting network resources and application data 24 hours a day, seven days a week, without affecting network performance, is a core function and the foundation of all F5 security products. Requirement 11: Regularly test security systems and processes. PCI DSS Quick Reference Guide description: Vulnerabilities are being discovered continually by malicious individuals and researchers, and being introduced by new software. System components, processes, and custom software should be tested frequently to ensure security is maintained over time. Testing of security controls is especially important for any environmental changes such as deploying new software or changing system configuration. Solution: The spirit of this requirement is to ensure that the complying organization itself tests its security system and processes. Since F5 does not offer a penetration testing service, this is one of just two PCI DSS requirements that F5 products cannot significantly address. Next: Maintain an Information Security Policy ps429Views0likes0CommentsComplying with PCI DSS–Part 4: Implement Strong Access Control Measures
According to the PCI SSC, there are 12 PCI DSS requirements that satisfy a variety of security goals. Areas of focus include building and maintaining a secure network, protecting stored cardholder data, maintaining a vulnerability management program, implementing strong access control measures, regularly monitoring and testing networks, and maintaining information security policies. The essential framework of the PCI DSS encompasses assessment, remediation, and reporting. We’re exploring how F5 can help organizations gain or maintain compliance and today is Implement Strong Access Control Measures which includes PCI Requirements 7, 8 and 9. To read Part 1, click: Complying with PCI DSS–Part 1: Build and Maintain a Secure Network, Part 2: Complying with PCI DSS–Part 2: Protect Cardholder Data and Part 3: Complying with PCI DSS–Part 3: Maintain a Vulnerability Management Program. Requirement 7: Restrict access to cardholder data by business need-to-know. PCI DSS Quick Reference Guide description: To ensure critical data can only be accessed by authorized personnel, systems and processes must be in place to limit access based on a need to know and according to job responsibilities. Need to know is when access rights are granted to only the least amount of data and privileges needed to perform a job. Solution: BIG-IP APM and BIG-IP Edge Gateway control and restrict access to corporate applications and cardholder data. Secure access is granted at both user and network levels on an as-needed basis. Delivering outstanding performance, scalability, ease of use, and endpoint security, BIG-IP APM and BIG-IP Edge Gateway help increase the productivity of those working from home or on the road, allowing only authorized personnel access while keeping corporate and cardholder data secure. For application services, the BIG-IP platform protects data on the ADN as it is communicated to the user and other service architectures. The BIG-IP platform can scan, inspect, manage, and control both incoming and outgoing data—in messaging requests such as headers (metadata), cookies, and POST data, and in message responses in metadata and in the response payload. BIG-IP APM, BIG-IP Edge Gateway, and BIG-IP ASM, along with the TMOS operating system, all work together to create a secure, role-based data access path, prohibiting malicious users from bypassing role restrictions and accessing unauthorized data. Lastly, BIG-IP ASM can help make sure web pages that should only be accessed after user login/authentication are only accessible to users who have been properly authenticated. Requirement 8: Assign a unique ID to each person with computer access. PCI DSS Quick Reference Guide description: Assigning a unique identification (ID) to each person with access ensures that actions taken on critical data and systems are performed by, and can be traced to, known and authorized users. Requirements apply to all accounts, including point of sale accounts, with administrative capabilities and all accounts with access to stored cardholder data. Solution: The entire F5 product suite addresses the issue of unique user identification and management and acts as an enforcement mechanism. For identification, BIG-IP APM, BIG-IP Edge Gateway, and BIG-IP ASM all work on the user session level, managing a single user session throughout its duration. This is accomplished using various tools, such as secure cookies, session IDs, and flow based policies. For authentication, BIG-IP APM and BIG-IP Edge Gateway communicate with nearly all user ID and authentication systems via RADIUS, Active Directory, RSA-native, Two-Factor, LDAP authentication methods, basic and forms-based HTTP authentication, SSO Identity Management Servers such as Siteminder, and Windows Domain Servers. They also support programmatic user authentication via secure keys, smart cards, and client SSL certificates, allowing near-infinite authentication combinations across public and enterprise credential services. Transport security is accomplished through TLS/SSL. The BIG-IP platform can offload SSL computations from the back-end application servers, providing data security and network flexibility. A BIG-IP ADC is a full SSL proxy, allowing it to inspect and protect data passed to the application over SSL before re-encrypting the data for secure delivery to the application or back to the user. In addition, BIG-IP APM’s detailed reporting gives organizations the answers to questions such as “Who accessed the application or network, and when?” and “From what geolocations are users accessing the network?” Reporting capabilities include custom reports on numerous user metrics, with statistics grouped by application and user. Requirement 9: Restrict physical access to cardholder data. PCI DSS Quick Reference Guide description: Any physical access to data or systems that house cardholder data provides the opportunity for persons to access and/or remove devices, data, systems, or hardcopies, and should be appropriately restricted. “Onsite personnel” are full-and part-time employees, temporary employees, contractors, and consultants who are physically present on the entity’s premises. “Visitors” are vendors and guests that enter the facility for a short duration, usually up to one day. “Media” is all paper and electronic media containing cardholder data. Solution: A hardware security module (HSM) is a secure physical device designed to generate, store, and protect digital, high-value cryptographic keys. It is a secure crypto-processor that often comes in the form of a plug-in card (or other hardware) with tamper protection built in. HSMs also provide the infrastructure for finance, government, healthcare, and others to conform to industry-specific regulatory standards. Many BIG-IP devices are FIPS 140-2 Level 2 compliant. This security rating indicates that once sensitive data is imported into the HSM, it incorporates cryptographic techniques to ensure the data is not extractable in a plain-text format. It provides tamper-evident seals to deter physical tampering. In fact, the HSM in BIG-IP is certified at 140-2 level 3. By being certified at level 3, the HSM has a covering of hardened epoxy which, if removed, will render the card useless. The BIG-IP system includes the option to install a FIPS HSM (on BIG-IP 6900, 8900, 11000, and 11050 devices). Additionally, the FIPS cryptographic/SSL accelerator uses smart cards to authenticate administrators, grant access rights, and share administrative responsibilities to provide a flexible and secure means for enforcing key management security. PCI Cardholder Data Environment with F5 Technologies Next: Regularly Monitor and Test Networks ps344Views0likes0CommentsOde to FirePass
A decade ago, remote VPN access was a relatively new concept for businesses; it was available only to a select few who truly needed it, and it was usually over a dial-up connection. Vendors like Cisco, Check Point, and Microsoft started to develop VPN solutions using IPsec, one of the first transport layer security protocols, and RADIUS Server. At first organizations had to launch the modem and enter the pertinent information, but soon client software was offered as a package. This client software had to be installed, configured, and managed on the user’s computer. As high-speed broadband became a household norm and SSL/TLS matured, the SSL VPN arrived, allowing secure connections via a browser-based environment. Client pre-installation and management hassles were eliminated; rather the masses now had secure access to corporate resources with just a few browser components and an appliance in the data center. These early SSL VPNs, like the first release of F5’s FirePass, offered endpoint checks and multiple modes of access depending on user needs. At the time, most SSL VPNs were limited in areas like overall performance, logins per second, concurrent sessions/users, and in some cases, throughput. Organizations that offered VPN extended it to executives, frequent travelers, and IT staff, and it was designed to provide separated access for corporate employees, partners, and contractors over the web portal. But these organizations were beginning to explore company-wide access since most employees still worked on-site. Today, almost all employees have multiple devices, including smartphones, and most companies offer some sort of corporate VPN access. By 2015, 37.2 percent of the worldwide workforce will be remote and therefore mobile—that’s 1.3 billion people. Content is richer, phones are faster, and bandwidth is available—at least via broadband to the home. Devices need to be authenticated and securely connected to corporate assets, making a high-performance Application Delivery Controller (ADC) with unified secure access a necessity. As FirePass is retired, organizations will have two ADC options with which to replace it: F5 BIG-IP Edge Gateway, a standalone appliance, and BIG-IP Access Policy Manager (APM), a module that can be added to BIG-IP LTM devices. Both products are more than just SSL VPNs—they’re the central policy control points that are critical to managing dynamic data center environments. A Little History F5’s first foray into the SSL VPN realm was with its 2003 purchase of uRoam and its flagship product, FirePass. Although still small, Infonetics Research predicted that the SSL VPN market will swell from around $25 million [in 2002] to $1 billion by 2005/6 and the old meta Group forecasted that SSL-based technology would be the dominant method for remote access, with 80 percent of users utilizing SSL by 2005/6. They were right—SSL VPN did take off. Using technology already present in web browsers, SSL VPNs allowed any user from any browser to type in a URL and gain secure remote access to corporate resources. There was no full client to install—just a few browser control components or add-on to facilitate host checks and often, SSL-tunnel creation. Administrators could inspect the requesting computer to ensure it achieved certain levels of security, such as antivirus software, a firewall, and client certificates. Like today, there were multiple methods to gain encrypted access. There was (and still is) the full layer-3 network access connection; a port forwarding or application tunnel–type connection; or simply portal web access through a reverse proxy. SSL VPNs Mature With more enterprises deploying SSL VPNs, the market grew and FirePass proved to be an outstanding solution. Over the years, FirePass has lead the market with industry firsts like the Visual Policy Editor, VMware View support, group policy support, an SSL client that supported QoS (quality of service) and acceleration, and integrated support with third-party security solutions. Every year from 2007 through 2010, FirePass was an SC Magazine Reader Trust finalist for Best SSL VPN. As predicted, SSL VPN took off in businesses; but few could have imagined how connected the world would really become. There are new types of tablet devices and powerful mobile devices, all growing at accelerated rates. And today, it’s not just corporate laptops that request access, but personal smartphones, tablets, home computers, televisions, and many other new devices that will have an operating system and IP address. As the market has grown, the need for scalability, flexibility, and access speed became more apparent. In response, F5 began including the FirePass SSL VPN functionality in the BIG-IP system of Application Delivery Controllers, specifically, BIG-IP Edge Gateway and BIG-IP Access Policy Manager (APM). Each a unified access solution, BIG-IP Edge Gateway and BIG-IP APM are scalable, secure, and agile controllers that can handle all access needs, whether remote, wireless, mobile, or LAN. The secure access reigns of FirePass have been passed to the BIG-IP system; by the end of 2012, FirePass will no longer be available for sale. For organizations that have a FirePass SSL VPN, F5 will still offer support for it for several years. However those organizations are encouraged to test BIG-IP Edge Gateway or BIG-IP APM. Unified Access Today The accelerated advancement of the mobile and remote workforce is driving the need to support tens of thousands concurrent users. The bursting growth of Internet traffic and the demand for new services and rich media content can place extensive stress on networks, resulting in access latency and packet loss. With this demand, the ability of infrastructure to scale with the influx of traffic is essential. As business policies change over time, flexibility within the infrastructure gives IT the agility needed to keep pace with access demands while the security threats and application requirements are constantly evolving. Organizations need a high-performance ADC to be the strategic point of control between users and applications. This ADC must understand both the applications it delivers and the contextual nature of the users it serves. BIG-IP Access Policy Manager BIG-IP APM is a flexible, high-performance access and security add-on module for either the physical or virtual edition of BIG-IP Local Traffic Manager (LTM). BIG-IP APM can help organizations consolidate remote access infrastructure by providing unified global access to business-critical applications and networks. By converging and consolidating remote access, LAN access, and wireless connections within a single management interface, and providing easy-to-manage access policies, BIG-IP APM can help free up valuable IT resources and scale cost-effectively. BIG-IP APM protects public-facing applications by providing policy-based, context-aware access to users while consolidating access infrastructure. BIG-IP Edge Gateway BIG-IP Edge Gateway is a standalone appliance that provides all the benefits of BIG-IP APM—SSL VPN remote access security—plus application acceleration and WAN optimization services at the edge of the network—all in one efficient, scalable, and cost-effective solution. BIG-IP Edge Gateway is designed to meet current and future IT demands, and can scale up to 60,000 concurrent users on a single box. It can accommodate all converged access needs, and on a single platform, organizations can manage remote access, LAN access, and wireless access by creating unique policies for each. BIG-IP Edge Gateway is the only ADC with remote access, acceleration, and optimization services built in. To address high latency links, technologies like intelligent caching, WAN optimization, compression, data deduplication, and application-specific optimization ensure the user is experiencing the best possible performance, 2 to 10 times faster than legacy SSL VPNs. BIG-IP Edge Gateway gives organizations unprecedented flexibility and agility to consolidate all their secure access methods on a single device. FirePass SSL VPN Migration A typical F5 customer might have deployed FirePass a few years ago to support RDP virtual desktops, endpoint host checks, and employee home computers, and to begin the transition from legacy IPsec VPNs. As a global workforce evolved with their smartphones and tablets, so did IT's desire to consolidate their secure access solutions. Many organizations have upgraded their FirePass controller functionality to a single BIG-IP appliance. Migrating any system can be a challenge, especially when it is a critical piece of the infrastructure that global users rely on. Migrating security devices, particularly remote access solutions, can be even more daunting since policies and settings are often based on an identity and access management framework. Intranet web applications, network access settings, basic device configurations, certificates, logs, statistics, and many other settings often need to be configured on the new controller. FirePass can make migrating to BIG-IP Edge Gateway or BIG-IP APM a smooth, fast process. The FirePass Configuration Export Tool, available as a hotfix (HF-359012-1) for FirePass v6.1 and v7, exports configurations into XML files. Device management, network access, portal access, and user information can also all be exported to an XML file. Special settings like master groups, IP address pools, packet filter rules, VLANS, DNS, hosts, drive mappings, policy checks, and caching and compression are saved so an administrator can properly configure the new security device. It’s critical that important configuration settings are mapped properly to the new controller, and with the FirePass Configuration Export Tool, administrators can deploy the existing FirePass configurations to a new BIG-IP Edge Gateway device or BIG-IP APM module. A migration guide will be available shortly. SSL VPNs like FirePass have helped pave the way for easy, ubiquitous remote access to sensitive corporate resources. As the needs of the corporate enterprise change, so must the surrounding technology tasked with facilitating IT initiates. The massive growth of the mobile workforce and their devices, along with the need to secure and optimize the delivery of rich content, requires a controller that is specifically developed for application delivery. Both BIG-IP Edge Gateway and BIG-IP APM offer all the SSL VPN functionality found in FirePass, but on the BIG-IP platform. ps Resources: 2011 Gartner Magic Quadrant for SSL VPNs F5 Positioned in Leaders Quadrant of SSL VPN Magic Quadrant SOL13366 - End of Sale Notice for FirePass SOL4156 - FirePass software support policy Secure Access with the BIG-IP System | (whitepaper) FirePass to BIG-IP APM Migration Service F5 FirePass to BIG-IP APM Migration Datasheet FirePass Wiki Home Audio Tech Brief - Secure iPhone Access to Corporate Web Applications In 5 Minutes or Less - F5 FirePass v7 Endpoint Security Pete Silva Demonstrates the FirePass SSL-VPN Technorati Tags: F5, infrastructure 2.0, integration, cloud connect, Pete Silva, security, business, education, technology, application delivery, intercloud, cloud, context-aware, infrastructure 2.0, automation, web, internet320Views0likes0CommentsWhere Do You Wear Your Malware?
The London Stock Exchange, Android phones and even the impenetrable Mac have all been malware targets recently. If you’re connected to the internet, you are at risk. It is no surprise that the crooks will go after whatever device people are using to conduct their life – mobile for example, along with trying to achieve that great financial heist….’if we can just get this one big score, then we can hang up our botnets and retire!’ Perhaps Homer Simpson said it best, ‘Ooh, Mama! This is finally really happening. After years of disappointment with get-rich-quick schemes, I know I'm gonna get Rich with this scheme...and quick!’ Maybe we call this the Malware Mantra! Malware has been around for a while, has changed and evolved over the years and we seem to have accepted it as part of the landmines we face when navigating the internet. I would guess that we might not even think about malware until it has hit us….which is typical when it comes to things like this. Out of sight, Out of mind. I don’t think ‘absence makes the heart grow fonder’ works with malware. We certainly take measures to guard ourselves, anti-virus/firewall/spoof toolbars/etc, which gives us the feeling of protection and we click away thinking that our sentinels will destroy anything that comes our way. Not always so. It was reported that the London Stock Exchange was delivering malvertising to it’s visitors. The LSE site itself was not infected but the pop-up ads from the site delivered some nice fake warnings saying the computer was infected and in danger. This is huge business for cybercriminals since they insert their code with the third-party advertiser and never need to directly attack the main site. Many sites rely on third-party ads so this is yet another area to be cautious of. One of the things that Web 2.0 brought was the ability to deliver or feed other sites with content. If you use NoScript with Firefox on your favorite news site (or any major site for that matter), you can see the amazing amount of content coming from other sources. Sometimes, 8-10 or more domains are listed as content generators so be very careful as to which ones you allow. With the success of the Android platform, it also becomes a target. This particular mobile malware looks and acts like the actual app. The problem is that it also installs a backdoor to the phone and asks for additional permissions. Once installed, it can connect to a command server and receive instructions; including sending text messages, add URL’s/direct a browser to a site along with installing additional software. The phone becomes part of a botnet. Depending on your contract, all these txt can add up leading to a bill that looks like you just bought a car. In fact, Google has just removed 21 free apps from the Android Market saying its malware designed to get root access to the user’s device. They were all masquerading as legitimate games and utilities. If you got one of these, it’s highly recommended that you simply take your phone back to the carrier and swap it for a new one, since there’s no way of telling what has been compromised. As malware continues to evolve, the mobile threat is not going away. This RSA2011 recap predicts mobile device management as the theme for RSA2012. And in related news, F5 recently released our Edge Portal application for the Android Market – malware free. Up front, I’m not a Mac user. I like them, used them plenty over the years and am not opposed to getting one in the future, just owned Windows devices most of my life. Probably due to the fact that my dad was an IBM’r for 30 years. Late last week, stories started to appear about some beta malware targeting Macs. It is called BlackHole RAT. It is derived from a Windows family of trojans and re-written to target Mac. It is spreading through torrent sites and seems to be a proof-of-concept of what potentially can be accomplished. Reports say that it can do remote control of an infected machine, open web pages, display messages and force re-boots. There is also some disagreement around the web as to the seriousness of the threat but despite that, criminals are trying. Once we all get our IPv6 chips installed in our earlobes and are able to take calls by pulling on our ear, a la Carol Burnett style, I wonder when the first computer to human virus will be reported. The wondering is over, it has already happened. ps Resources: London Stock Exchange site shows malicious adverts When malware messes with the markets Android an emerging target for cyber criminals Google pulls 21 apps in Android malware scare More Android mobile malware surfaces in third-party app repositories Infected Android app runs up big texting bills Ignoring mobile hype? Don't overlook growing mobile device threats "BlackHole" malware, in beta, aims for Mac users Mac Trojan uses Windows backdoor code I'll Believe Mac malware is a problem when I see it BlackHole RAT is Really No Big Deal 20 years of innovative Windows malware Edge Portal application on Android Market311Views0likes0CommentsAccess Control in the New Mobile, Hybrid World
There is a brave new world dawning for the corporate world. There are many “new norms” – and a gold rush of new opportunities, but also new challenges with which they come – streaking like lightning throughout organizations. The workforce of today and into the future is, and will continue to be mobile. Consider that according to analyst IDC, 37 percent of the worldwide workforce will be mobile by the end of 2015. That’s about 1.3 billion mobile workers, worldwide – not to mention there will be two or more times as many mobile devices as mobile workers! – by the end of this calendar year! Then, consider this: According to Orange Business Services, 55 percent of worldwide business IP traffic will be mobile business Internet traffic by 2018. Mobility is here, and it’s here to stay. (In the Asia Pacific region, IDC anticipates the bring your own device (BYOD) market will continue its robust growth. There were an estimated 155 million smartphones and over 4 million tablets in use supporting BYOD initiatives across the region last year (2014), with year-on-year growth of 40.4 percent and 62.7 percent, respectively. And, that’s not even considering the burgeoning area of wearable devices, either.) As the mobile workforce accelerates like a rocket into the stratosphere, cascading torrents of smartphones, tablets, and wearables across organizations in its wake, the number of cloud- and SaaS-based applications used within organizations is also skyrocketing at a breakneck pace. According to a recent study sponsored by SkyHigh Networks, there are on average 759 cloud services in use by today’s organizations. The most puzzling piece isn’t the magnitude of in use cloud apps and services. Instead, its that, according to a Cloud Security Alliance study, most organization IT teams believe they have fewer than 50 cloud-based apps in use. That means that over 700 cloud apps and services on average are in use within enterprises – but no one (but the user) has control over those apps and services, and any corporate information shared with them! The problem is, you cannot defend what you don’t know about! Finally, the last piece of the “new norm” puzzle for organizations is the hybrid network, an eclectic mix of data center and cloud-based apps and data, with a stew of hosted private, public and cloud infrastructures. According to analyst Gartner, “while actual hybrid cloud computing deployments are rare, nearly three-fourths of large enterprises expect to have hybrid deployments by 2015.” Consider that a mobile workforce will drive infrastructure changes, needed to address a more diverse device ecosystem. Then consider that infrastructure addressing mobility requires greater investment in cloud-based apps and services to support that expanding device ecosystem. So, as you can see, the future of the network fabric for the foreseeable future will be hybrid. So, with a “new norm” of mobility, cloud, and hybrid networks, how can organizations address network, application, and data accessibility? With so many new devices that are mobile and are under limited corporate control, and applications and data scattered about the network and in various clouds and SaaS deployments, how can an enterprise be assured of fast, appropriate, authenticated and authorized access? With so many variables, there is one constant that remains: Identity. The user – and their identity – is, arguably, the “new perimeter” for the enterprise, today and onward. As the traditional network perimeter has been broken, fragmented, and in many instances shattered into many pieces, identity has become the new perimeter. As applications, data, and even networks move faster toward the cloud, and the user-controlled, BYOD-driven mobile ecosystem expands exponentially, corporate control has become more difficult, dispersed, and dependent on others – and many times, that’s the security uninformed and apathetic user. User identity, though, never changes. And, backed by authentication, authorization, and accounting (AAA), identity is now the first line of defense for secure corporate access. But, identity is just the tip of the spear for controlling the new parameters of access. The context of a user’s access request, and their environment at the time of access request, follow identity; inarguably, they have as much to do with securing appropriate access as identity. The ability to address the 5 w’s and 1 h (who, what, when, where, why, and how) assures, enhances, and differentiates secure access to networks, clouds, applications and data – wherever they may reside and however they are comprised. Insuring user identity is efficiently, securely shared between networks, clouds, applications, and data – wherever they live – is now a necessity. Yet, there are challenges: Identity silos, on-premise identity with cloud- and SaaS-based apps and data, and user password fatigue leading to weak user names and passwords – which are easily compromised. That’s where building an identity bridge comes in. Federation builds a trusted chain of user identity between two entities – networks, clouds, applications, etc. – through industry standards, such as SAML. The cumbersome duplication and insertion of identity directories becomes unnecessary. Identity and access is controlled by an enterprise, with authentication occurring between the enterprise, and cloud and SaaS providers. Instant user authentication and its termination is centralized and under enterprise control. Identity federation delivers access visibility and control together. Leveraging identity for access control, and building identity bridges are now imperative for organizations, as applications move outside the enterprise domain, the workforce and their devices are more mobile and leave the enterprises in droves, and the enterprise domain, too, has moved. It’s the “new norm”.287Views0likes1CommentIdentity Theft Roundup
I’m on a ID fraud kick lately and there are quite a few stories of late about identity theft. Here are just a few: House Approves Red Flags Exemptions – In January 2008, the Red Flag Rule went into existence which said that organizations (mainly banks and financial institutions) that extend credit to have a written Identity Theft Prevention Program designed to detect identity fraud on a day to day basis. This new bill would except certain businesses like physicians and hospitals from having to abide by the rule. Sen. Dodd (D-Conn) said that the bill, ‘makes clear that lawyers, doctors, dentists, orthodontists, pharmacists, veterinarians, accountants, nurse practitioners, social workers, other types of healthcare providers and other service providers will no longer be classified as 'creditors' for the purposes of the Red Flags Rule just because they do not receive payment in full from their clients at the time they provide their services, when they don't offer or maintain accounts that pose a reasonably foreseeable risk of identity theft.’ So if you don’t have a foreseeable risk of ID theft, I guess you don’t have to pay attention. Minn. man pleads guilty in ND identity-theft case – 20 felonies, 19 counts of ID theft, 1 theft charge and a 28 year old only gets a year in jail and 5 years probation. He stole the SSN and names of 49 people. Military at high risk for identity theft – Did you know that military personnel are required to use their SSN for silly things like checking out a basketball at a gym or to identify their laundry bag? I didn’t and it is becoming a problem since most locations do not take ‘care’ of that personal info. Fla woman stole identity, paid for breast implants – You might remember this one where a woman in Miami stole someone’s identity and used fake credit cards to get her fake, well, you know. She also racked up $20,000 in new furniture. She got 30 months in a federal pen for that one. If you were wondering, she said she needed them since her old ones were giving her breathing problems. Kent couple arrested for identity theft, prescription forgeries – While investigating a prescription forgery ring, Kent Police uncovered a nice little counterfeiting operation run out of an apartment building. Since the suspect was a convicted felon with a firearm, SWAT arrived and took the couple without incident. Wait, fake prescriptions here and a new law that says medical facilities can pass on Red Flag? Hum. Man arrested in financial identity theft – It’s not just strangers getting hit – here a 20 year old opened a credit card account in his grandparent’s names and just added himself as an authorized user. $4000 worth of cigs, alcohol and electronic equipment later, he was in jail. Queens D.A. Warns: Beware New ID Theft – At least in New York, thieves are using what’s called a ‘spoof card’ to get personal information. Spoof cards are like calling cards but allows the caller to enter whatever number they want on the receiver’s caller ID. Oh, a call from the bank. They act/sound all authoritative on the phone and people spill the info. This is a great opportunity to turn the tables – ask the caller to validate a piece of information. To validate the caller, ask a couple questions that the bank usually asks you like, last transaction or first dog’s name. Or, just say, ‘I’ll call you back at the number on your web site.’ ID theft alleged at Libertyville driver's license facility – A 22 year employee at an Illinois driver’s license facility gets caught giving other’s personal information to thieves. Those thieves then opened credit card accounts with the info. He’s facing 3 years in prison but shows just how slippery your personal info is in the hands of others. More to come… ps twitter: @psilvas273Views0likes0CommentsInternet of Insider Threats
Identify Yourself, You Thing! Imagine if Ben Grimm, aka The Thing, didn’t have such distinctive characteristics like an orange rocky body, blue eyes or his battle cry, ‘It’s Clobberin’ Time!’ and had to provide a photo ID and password to prove he was a founding member of the Fantastic Four. Or if the alien in John Carpenter’s The Thing gave each infected life-form the proper credentials to come and go as they please. Today the things we call ‘Things’ are infiltrating every aspect of society but how do organizations identify, secure and determine access for the 15+ connected chips employees will soon be wearing to the office? And what business value to they bring? Gartner refers to it as the ‘Identity of Things’ (IDoT) and an extension to identity management that encompasses all entity identities, whatever form those entities take. According to Gartner, IoT is part of the larger digital business trend transforming enterprises. It means that the business, the people/employees and the ‘things’ are all responsible in delivering business value. The critical part is the relationships between or among those participants so the business policies and procedures can reflect those relationships. Those relationships can be between a device and a human; a device and another device; a device and an application or service; or a human and an application or service. For instance, how does the system(s) know that the wearable asking for Wi-Fi access is the one connected to your wrist? It really doesn’t since today’s Identity and Access Management (IAM) systems are typically people-based and unable to scale as more entities enter the workplace. Not to mention the complexity involved with deciding if the urine powered socks the VP is wearing gets access. The number of relationships between people and the various entities/things will grow to an almost unmanageable point. Could anyone manage a subset of the expected 50 billion devices over the next 4 years? And set policies for data sharing permissions? Not without a drastic change to how we identify and integrate these entities. Talk about the Internet of Insider Threats. That's IoIT for those counting. Gartner suggests that incorporating functional characteristics of existing management systems like IT Asset Management (ITAM) and Software Management Systems (SAM) within the IAM framework might aid in developing a single-system view for IoT. The current static approach of IAM doesn’t take into account the dynamic relationships, which is vital to future IAM solutions. Relationships will become as important as the concept of identity is for IAM in the IDoT, according to Gartner. My, your, our identities are unique and have been used to verify you-are-you and based on that, give you access to certain resources, physical or digital. Now our identities are not only intertwined with the things around us but the things themselves also need to verify their identity and the relationship to ours. I can hear the relationship woes of the future: A: ‘I’m in a bad relationship…’ B: ‘Bad!?! I thought you were getting along?’ A: ‘We were until access was denied.’ B: ‘What are you talking about? You guys were laughing and having a great time at dinner last night.’ A: ‘Not my fiancé…it’s my smart-watch, smart-shoes, smart-socks, smart-shirt, smart-pants, smart-belt, smart-glasses, smart-water bottle, smart fitness tracker and smart-backpack.' IT said, 'It’s not you, it’s me.' ps The Identity of Things for the Internet of Things IoT Requires Changes From Identity and Access Management Space: Gartner What is IoT without Identity? IoT: A new frontier for identity Health and Finance Mobile Apps Still Incredibly Insecure Internet of Things 'smart' devices are dumb by design Authentication in the IoT – challenges and opportunities Technorati Tags: iot,things,wearables,iam,insider threat,security,silva,f5,identity,access Connect with Peter: Connect with F5:266Views0likes0Comments