active directory
5 TopicsBig-IP and ADFS Part 2 - APM: An Alternative to the ADFS Proxy
So let’s talk Application Delivery Controllers, (ADC). In part one of this series we deployed both an internal ADFS farm as well as a perimeter ADFS proxy farm using the Big-IP’s exceptional load balancing capabilities to provide HA and scalability. But there’s much more the Big-IP can provide to the application delivery experience. Here in part 2 we’ll utilize the Access Policy Manager, (APM) module as a replacement for the ADFS Proxy layer. To illustrate this approach, we’ll address one of the most common use cases; ADFS deployment to federate with and enable single sign-on to Microsoft Office 365 web-based applications. The purpose of the ADFS Proxy server is to receive and forward requests to ADFS servers that are not accessible from the Internet. As noted in part one, for high availability this typically requires a minimum of two proxy servers as well as an additional load balancing solution, (F5 Big-IPs of course). By implementing APM on the F5 appliance(s) we not only eliminate the need for these additional servers but, by implementing pre-authentication at the perimeter and advanced features such as client-side checks, (antivirus validation, firewall verification, etc.), arguably provide for a more secure deployment. Assumptions and Product Deployment Documentation - This deployment scenario assumes the reader is assumed to have general administrative knowledge of the BIG-IP LTM module and basic understanding of the APM module. If you want more information or guidance please check out F5’s support site, ASKF5. The following diagram shows a typical internal and external client access AD FS to Office 365 Process Flow, (used for passive-protocol, “web-based” access). Both clients attempts to access the Office 365 resource; Both clients are redirected to the resource’s applicable federation service, (Note: This step may be skipped with active clients such as Microsoft Outlook); Both client are redirected to their organization’s internal federation service; The AD FS server authenticates the client to active directory; * Internal clients are load balanced directly to an ADFS server farm member; and * External clients are: * Pre-authenticated to Active Directory via APM’s customizable sign-on page; *Authenticated users are directed to an AD FS server farm member. The ADFS server provides the client with an authorization cookie containing the signed security token and set of claims for the resource partner; The client connects to the Microsoft Federation Gateway where the token and claims are verified. The Microsoft Federation Gateway provides the client with a new service token; and The client presents the new cookie with included service token to the Office 365 resource for access. Virtual Servers and Member Pool – Although all users, (both internal and external) will access the ADFS server farm via the same Big-IP(s), the requirements and subsequent user experience differ. While internal authenticated users are load balanced directly to the ADFS farm, external users must first be pre-authenticated, (via APM) prior to be allowed access to an ADFS farm member. To accomplish this two, (2) virtual servers are used; one for the internal access and another dedicated for external access. Both the internal and external virtual servers are associated with the same internal ADFS server farm pool. INTERNAL VIRTUAL SERVER – Refer to Part 1 of this guidance for configuration settings for the internal ADFS farm virtual server. EXTERNAL VIRTUAL SERVER – The configuration for the external virtual server is similar to that of the virtual server described in Part 1 of this guidance. In addition an APM Access Profile, (see highlighted section and settings below) is assigned to the virtual server. APM Configuration – The following Access Policy Manager, (APM) configuration is created and associated with the external virtual server to provide for pre-authentication of external users prior to being granted access to the internal ADFS farm. As I mentioned earlier, the APM module provides advanced features such as client-side checks and single sign-on, (SSO) in addition to pre-authentication. Of course this is just the tip of the iceberg. Take a deeper look at client-side checks at AskF5. AAA SERVER - The ADFS access profile utilizes an Active Directory AAA server. ACCESS POLICY - The following access policy is associated with the ADFS access profile. * Prior to presenting the logon page client machines are checked for the existence of updated antivirus. If the client lacks either antivirus software or does not have updated, (within 30 days) virus definitions the user is redirected to a mitigation site. * An AD query and simple iRule is used to provide single-url OWA access for both on-premise and Office365 Exchange users. SSO CONFIGURATION - The ADFS access portal uses an NTLM v1 SSO profile with multiple authentication domains, (see below). By utilizing multiple SSO domains, clients are required to authenticate only once to gain access to both hosted applications such as Exchange Online and SharePoint Online as well as on-premise hosted applications. To facilitate this we deploy multiple virtual servers, (ADFS, Exchange, SharePoint) utilizing the same SSO configuration. CONNECTIVITY PROFILE – A connectivity profile based upon the default connectivity profile is associated with the external virtual server. Whoa! That’s a lot to digest. But if nothing else, I hope this inspires you to further investigate APM and some of the cool things you can do with the Big-IP beyond load balancing. Additional Links: Big-IP and ADFS Part 1 – “Load balancing the ADFS Farm” Big-IP and ADFS Part 3 - “ADFS, APM, and the Office 365 Thick Clients” BIG-IP Access Policy Manager (APM) Wiki Home - DevCentral Wiki Latest F5 Information F5 News Articles F5 Press Releases F5 Events F5 Web Media F5 Technology Alliance Partners F5 YouTube Feed4.2KViews0likes7CommentsBig-IP and ADFS Part 4 – “What about Single Sign-Out?”
Why stop at 3 when you can go to 4? Over the past few posts on this ever-expanding topic, we’ve discussed using ADFS to provide single sign-on access to Office 365. But what about single sign-out? A customer turned me onto Tristan Watkins’ blog post that discusses the challenges of single sign-out for browser-based, (WS-Federation) applications when fronting ADFS with a reverse-proxy. It’s a great blog post and covers the topic quite well so I won’t bother re-hashing it here. However, I would definitely recommend reading his post if you want a deeper dive. Here’s the sign-out process: 1. User selects ‘Sign Out’ or ‘Sign in as Different User’, (if using SharePoint Online); 2. The user is signed out of the application; 3. The user is redirected to the ADFS sign out page; and 4. The user is redirected back to the Microsoft Federation Gateway and the user’s tokens are invalidated. In a nutshell, claims-unaware proxies, (Microsoft ISA and TMG servers for example) are unable to determine when this process has occurred and subsequently the proxy session remains active. This in turn will allow access to ADFS, (and subsequently Office 365) without be prompted for new credentials, (not good!). Here’s where I come clean with you dear readers. While the F5 Big-IP with APM is a recognized replacement for the AD FS 2.0 Federation Server Proxy this particular topic was not even on my radar. But now that it is…… Single Sign-Out with Access Policy Manager You’ll may have noticed that although the Big-IP with APM is a claims-unaware proxy I did not include it in the list above. Why you ask? Well, although the Big-IP is currently “claims-unaware”, it certainly is “aware” of traffic that passes through. With the ability to analyze traffic as it flows from both the client and the server side, the Big-IP can look for triggers and act upon them. In the case of the ADFS sign-out process, we’ll use the MSISSignOut cookie as our trigger to terminate the proxy session accordingly. During the WS-Federation sign out process, (used by browser-based applications) the MSISSignOut cookie is cleared out by the ADFS server, (refer to the HttpWatch example below). Once this has been completed, we need to terminate the proxy session. Fortunately, there’s an iRule for that. The iRule below analyzes the HTTP response back from the ADFS server and keys off of the MSISSignOut cookie. If the cookie’s value has been cleared, the APM session will be terminated. To allow for a clean sign-out process with the Microsoft Federation Gateway, the APM session termination is delayed long enough for the ADFS server to respond. Now, APM’s termination can act in concert with the ADFS sign-out process. 1: when HTTP_RESPONSE { 2: # Review server-side responses for reset of WS-Federation sign-out cookie - MSISSignOut. 3: # If found assign ADFS sign-out session variable and close HTTP connection 4: if {[HTTP::header "Set-Cookie"] contains "MSISSignOut=;"} { 5: ACCESS::session data set session.user.adfssignout 1 6: HTTP::close 7: } 8: } 9: 10: when CLIENT_CLOSED { 11: # Remove APM session if ADFS sign-out variable exists 12: if {[ACCESS::session data get session.user.adfssignout] eq 1} { 13: after 5000 14: ACCESS::session remove 15: } 16: } What? Another iRule? Actually, the above snippet can be combined with the iRule we implemented in Part 3 creating a single iRule addressing all the ADFS/Office 365 scenarios. 1: when HTTP_REQUEST { 2: # For external Lync client access all external requests to the 3: # /trust/mex URL must be routed to /trust/proxymex. Analyze and modify the URI 4: # where appropriate 5: HTTP::uri [string map {/trust/mex /trust/proxymex} [HTTP::uri]] 6: 7: # Analyze the HTTP request and disable access policy enforcement WS-Trust calls 8: if {[HTTP::uri] contains "/adfs/services/trust"} { 9: ACCESS::disable 10: } 11: 12: # OPTIONAL ---- To allow publishing of the federation service metadata 13: if {[HTTP::uri] ends_with "FederationMetadata/2007-06/FederationMetadata.xml"} { 14: ACCESS::disable 15: } 16: } 17: 18: when HTTP_RESPONSE { 19: # Review serverside responses for reset of WS-Federation sign-out cookie - MSISSignOut. 20: # If found assign ADFS sign-out session variable and close HTTP connection 21: if {[HTTP::header "Set-Cookie"] contains "MSISSignOut=;"} { 22: ACCESS::session data set session.user.adfssignout 1 23: HTTP::close 24: } 25: } 26: 27: when CLIENT_CLOSED { 28: # Remove APM session if ADFS sign-out variable exists 29: if {[ACCESS::session data get session.user.adfssignout] eq 1} { 30: after 5000 31: ACCESS::session remove 32: } 33: } Gotta love them iRules! That’s all for now. Additional Links: Big-IP and ADFS Part 1 – “Load balancing the ADFS Farm” Big-IP and ADFS Part 2 – “APM–An Alternative to the ADFS Proxy” Big-IP and ADFS Part 3 – “ADFS, APM, and the Office 365 Thick Clients” BIG-IP Access Policy Manager (APM) Wiki Home - DevCentral Wiki AD FS 2.0 - Interoperability with Non-Microsoft Products MS TechNet - AD FS: How to Invoke a WS-Federation Sign-Out Tristan Watkins - Office 365 Single Sign Out with ISA or TMG as the ADFS Proxy Technorati Tags: load balancer,ADFS,Office365,active directory,F5,federation,exchange,microsoft,network,blog,APM,LTM,Coward,SSO,single sign-on,single sign-out979Views0likes2CommentsBig-IP and ADFS Part 1 – “Load balancing the ADFS Farm”
Just like the early settlers who migrated en masse across the country by wagon train along the Oregon Trail, enterprises are migrating up into the cloud. Well okay, maybe not exactly like the early settlers. But, although there may not be a mass migration to the cloud, it is true that more and more enterprises are moving to cloud-based services like Office 365. So how do you provide seamless, or at least relatively seamless, access to resources outside of the enterprise? Well, one answer is federation and if you are a Microsoft shop then the current solution is ADFS, (Active Directory Federation Services). The ADFS server role is a security token service that extends the single sign-on, (SSO) experience for directory-authenticated clients to resources outside of the organization’s boundaries. As cloud-based application access and federation in general becomes more prevalent, the role of ADFS has become equally important. Below, is a typical deployment scenario of the ADFS Server farm and the ADFS Proxy server farm, (recommended for external access to the internally hosted ADFS farm). Warning…. If the ADFS server farm is unavailable then access to federated resources will be limited if not completely inaccessible. To ensure high-availability, performance, and scalability the F5 Big-IP with LTM, (Local Traffic Manager), can be deployed to load balance the ADFS and ADFS Proxy server farms. Yes! When it comes to a load balancing and application delivery, F5’s Big-IP is an excellent choice. Just had to get that out there. So let’s get technical! Part one of this blog series addresses deploying and configuring the Big-IP’s LTM module for load balancing the ADFS Server farm and Proxy server farm. In part two I’m going to show how we can greatly simplify and improve this deployment by utilizing Big-IP’s APM, (Access Policy Manager) so stay tuned. Load Balancing the Internal ADFS Server Farm Assumptions and Product Deployment Documentation - This deployment scenario assumes an ADFS server farm has been installed and configured per the deployment guide including appropriate trust relationships with relevant claims providers and relying parties. In addition, the reader is assumed to have general administrative knowledge of the BIG-IP LTM module. If you want more information or guidance please check out F5’s support site, ASKF5. The following diagram shows a typical, (albeit simplified) process flow of the Big-IP load balanced ADFS farm. Client attempts to access the ADFS-enabled external resource; Client is redirected to the resource’s applicable federation service; Client is redirected to its organization’s internal federation service, (assuming the resource’s federation service is configured as trusted partner); The ADFS server authenticates the client to active directory; The ADFS server provides the client with an authorization cookie containing the signed security token and set of claims for the resource partner; The client connects to the resource partner federation service where the token and claims are verified. If appropriate, the resource partner provides the client with a new security token; and The client presents the new authorization cookie with included security token to the resource for access. VIRTUAL SERVER AND MEMBER POOL – A virtual server, (aka VIP) is configured to listen on port 443, (https). In the event that the Big-IP will be used for SSL bridging, (decryption and re-encryption), the public facing SSL certificate and associated private key must be installed on the BIG-IP and associated client SSL profile created. However, as will be discussed later SSL bridging is not the preferred method for this type of deployment. Rather, SSL tunneling, (pass-thru) will be utilized. ADFS requires Transport Layer Security and Secure Sockets Layer (TLS/SSL). Therefore pool members are configured to listen on port 443, (https). LOAD BALANCING METHOD – The ‘Least Connections (member)’ method is utilized. POOL MONITOR – To ensure the AD FS service is responding as well as the web site itself, a customized monitor can be used. The monitor ensures the AD FS federation service is responding. Additionally, the monitor utilizes increased interval and timeout settings. The custom https monitor requires domain credentials to validate the service status. A standard https monitor can be utilized as an alternative. PERSISTENCE – In this AD FS scenario, clients establish a single TCP connection with the AD FS server to request and receive a security token. Therefore, specifying a persistence profile is not necessary. SSL TUNNELING, (preferred method) – When SSL tunneling is utilized, encrypted traffic flows from the client directly to the endpoint farm member. Additionally, SSL profiles are not used nor are SSL certificates required to be installed on the Big-IP. In this instance Big-IP profiles requiring packet analysis and/or modification, (ex. compression, web acceleration) will not be relevant. To further boost the performance, a Fast L4 virtual server will be used. Load Balancing the ADFS Proxy Server Farm Assumptions and Product Deployment Documentation - This deployment scenario assumes an ADFS Proxy server farm has been installed and configured per the deployment guide including appropriate trust relationships with relevant claims providers and relying parties. In addition, the reader is assumed to have general administrative knowledge of the BIG-IP LTM module. If you want more information or guidance please check out F5’s support site, ASKF5. In the previous section we configure load balancing for an internal AD FS Server farm. That scenario works well for providing federated SSO access to internal users. However, it does not address the need of the external end-user who is trying to access federated resources. This is where the AD FS proxy server comes into play. The AD FS proxy server provides external end-user SSO access to both internal federation-enabled resources as well as partner resources like Microsoft Office 365. Client attempts to access the AD FS-enabled internal or external resource; Client is redirected to the resource’s applicable federation service; Client is redirected to its organization’s internal federation service, (assuming the resource’s federation service is configured as trusted partner); The AD FS proxy server presents the client with a customizable sign-on page; The AD FS proxy presents the end-user credentials to the AD FS server for authentication; The AD FS server authenticates the client to active directory; The AD FS server provides the client, (via the AD FS proxy server) with an authorization cookie containing the signed security token and set of claims for the resource partner; The client connects to the resource partner federation service where the token and claims are verified. If appropriate, the resource partner provides the client with a new security token; and The client presents the new authorization cookie with included security token to the resource for access. VIRTUAL SERVER AND MEMBER POOL – A virtual server is configured to listen on port 443, (https). In the event that the Big-IP will be used for SSL bridging, (decryption and re-encryption), the public facing SSL certificate and associated private key must be installed on the BIG-IP and associated client SSL profile created. ADFS requires Transport Layer Security and Secure Sockets Layer (TLS/SSL). Therefore pool members are configured to listen on port 443, (https). LOAD BALANCING METHOD – The ‘Least Connections (member)’ method is utilized. POOL MONITOR – To ensure the web servers are responding, a customized ‘HTTPS’ monitor is associated with the AD FS proxy pool. The monitor utilizes increased interval and timeout settings. "To SSL Tunnel or Not to SSL Tunnel” When SSL tunneling is utilized, encrypted traffic flows from the client directly to the endpoint farm member. Additionally, SSL profiles are not used nor are SSL certificates required to be installed on the Big-IP. However, some advanced optimizations including HTTP compression and web acceleration are not possible when tunneling. Depending upon variables such as client connectivity and customization of ADFS sign-on pages, an ADFS proxy deployment may benefit from these HTTP optimization features. The following two options, (SSL Tunneling and SSL Bridging) are provided. SSL TUNNELING - In this instance Big-IP profiles requiring packet analysis and/or modification, (ex. compression, web acceleration) will not be relevant. To further boost the performance, a Fast L4 virtual server will be used. Below is an example of the Fast L4 Big-IP Virtual server configuration in SSL tunneling mode. SSL BRIDGING – When SSL bridging is utilized, traffic is decrypted and then re-encrypted at the Big-IP device. This allows for additional features to be applied to the traffic on both client-facing and pool member-facing sides of the connection. Below is an example of the standard Big-IP Virtual server configuration in SSL bridging mode. Standard Virtual Server Profiles - The following list of profiles is associated with the AD FS proxy virtual server. Well that’s it for Part 1. Along with the F5 business development team for the Microsoft global partnership I want to give a big thanks to the guys at Ensynch, an Insight Company - Kevin James, David Lundell, and Lutz Mueller Hipper for reviewing and providing feedback. Stay tuned for Big-IP and ADFS Part 2 – “APM – An Alternative to the ADFS Proxy”. Additional Links: Big-IP and ADFS Part 2 – “APM–An Alternative to the ADFS Proxy” Big-IP and ADFS Part 3 - “ADFS, APM, and the Office 365 Thick Clients”5.2KViews0likes3CommentsBig-IP and ADFS Part 3 - “ADFS, APM, and the Office 365 Thick Clients”
Okay, so I never mentioned a part 3. But, the topic is just too much fun to let go. Besides, we have one more important section to cover. First, let’s recap parts one and two. In part one we discussed load balancing the ADFS and ADFS proxy farms providing for a highly-available and scalable deployment. Part two focused on utilizing the Access Policy Manager, (APM) module as a replacement for the ADFS proxy layer. This not only creates a more secure and flexible solution but simplifies the infrastructure. As you may recall, (if you’ve been following along), Office 365 was the use case for part two as we showed how the Big-IP with APM could provide pre-authentication and SSO sign-on for Outlook Web Access, (OWA). However, when it comes to accessing Office 365 resources from thick clients, (aka active protocols and active profiles), including Outlook and the Lync client things become a little more complicated. Let’s take a look. Passive Protocol – (Outlook Web App) Clients using the WS-Federation passive protocol, (primarily browser-based) process is as follows: The client attempts to access the Office 365 resource; The client is redirected to the Microsoft Federation Gateway The client is redirected to their organization’s internal federation service, (AD FS); The AD FS server authenticates the client to active directory; The AD FS server provides the client with an authorization cookie containing the signed security token and set of claims for the resource partner; The client connects to the Microsoft Federation Gateway where the token and claims are verified. The Microsoft Federation Gateway provides the client with a new service token; and The client presents the new cookie with included service token to the Office 365 resource for access. In the above case AD FS is using the WS-Federation protocol and SAML. This type of connection can be greatly enhanced by using the Big-IP’s APM to proxy the connections to AD FS. Active Protocol – (Outlook & Lync Clients) The interaction of clients like Outlook and Lync, (external client), is slightly different. In this case, the process utilizes the active protocol, WS-Trust, and SOAP. The client attempts to access the Office 365 resource and provides credentials; Office 365 looks to the Microsoft Federation Gateway for authentication; Microsoft Federation Gateway contacts the AD FS service on behalf of the client and presents the credentials; The AD FS authenticates the client credentials with active directory; AD FS provides the Microsoft Federation Gateway with a token; and The Microsoft Federation Gateway provides the Office 365 resource with the token allowing the client to access the resource. In simple terms, rather than the client doing the leg-work required to request and get the token from AD FS, the Microsoft Federation Gateway interacts directly with AD FS. Since the client is not connecting to AD FS itself APM, (or any proxy service) cannot be used. So, here’s the challenge. How do we allow the Microsoft Federation Gateway direct access for authentication of the thick clients, (Outlook and Lync) when deploying AD FS behind the Big-IP and APM while still pre-authenticating the passive connections, (browser-based and internal Lync)? It’s simple really; we’ll use an iRule. APM Bypass iRule To allow for direct access by the MS Federation Gateway, an iRule is created and assigned to the ADFS virtual server created in part two of this series. The iRule uses the HTTP_REQUEST event, (triggered when the system parses the HTTP request) and analyzes the URI. When a relevant request is received, the ACCESS::disable command is called disabling access policy enforcement and allowing the request through. For additional guidance on the third party proxy requirements, please refer to Microsoft’s guidance. Create and assign the following basic iRule to the external AD FS virtual server. 1: when HTTP_REQUEST { 2: 3: # For external Lync client access all external requests to the 4: # /trust/mex URL must be routed to /trust/proxymex. Analyze and modify the URI 5: # where appropriate 6: HTTP::uri [string map {/trust/mex /trust/proxymex} [HTTP::uri]] 7: 8: # Analyze the HTTP request and disable access policy enforcement WS-Trust calls 9: if {[HTTP::uri] contains "/adfs/services/trust"} { 10: ACCESS::disable 11: } 12: 13: # OPTIONAL ---- To allow publishing of the federation service metadata 14: if {[HTTP::uri] ends_with "FederationMetadata/2007-06/FederationMetadata.xml"} { 15: ACCESS::disable 16: } 17: } That’s it! Pretty straightforward right? Give it a try and let me know how it goes. Since we are working with external access I did not address AD FS 2.0 support for identifying and blocking external access. But, if you're interested in this advanced feature, please refer to Microsoft’s guidance. Additional Links: Big-IP and ADFS Part 1 – “Load balancing the ADFS Farm” Big-IP and ADFS Part 2 – “APM–An Alternative to the ADFS Proxy” BIG-IP Access Policy Manager (APM) Wiki Home - DevCentral Wiki Technorati Tags: load balancer,ADFS,Office365,active directory,F5,federation,exchange,microsoft,network,blog,APM,LTM,Coward686Views0likes1CommentF5 Friday: Ops First Rule
#cloud #microsoft #iam “An application is only as reliable as its least reliable component” It’s unlikely there’s anyone in IT today that doesn’t understand the role of load balancing to scale. Whether cloud or not, load balancing is the key mechanism through which load is distributed to ensure horizontal scale of applications. It’s also unlikely there’s anyone in IT that doesn’t understand the relationship between load balancing and high-availability (reliability). High-Availability (HA) architectures are almost always implemented using load balancing services to ensure seamless transition from one service instance to another in the event of a failure. What’s often overlooked is that scalability and HA isn’t important just for applications. Services – whether application or network-focused – must also be reliable. It’s the old “only as strong as the weakest link in the chain” argument. An application is only as reliable as its least reliable component – and that includes services and infrastructure upon which that application relies. It is – or should be – ops first rule; the rule that guides design of data center architectures. This requirement becomes more and more obvious as emerging architectures combining the data center and cloud computing are implemented, particularly when federating identity and access services. That’s because it is desirable to maintain control over the identity and access management processes that authenticate and authorize use of applications no matter where they may be deployed. Such an architecture relies heavily on the corporate identity store as the authoritative source of both credentials and permissions. This makes the corporate identity store a critical component in the application dependency chain, one that must necessarily be made as reliable as possible. Which means you need load balancing. A good example of how this architecture can be achieved is found in BIG-IP load balancing support for Microsoft’s Active Directory Federation Services (AD FS). AD FS and F5 Load Balancing Microsoft’s Active Directory Federation Services, (AD FS) sever role is an identity access solution that extends the single sign-on, (SSO) experience for directory-authenticated clients, (typically provided on the Intranet via Kerberos), to resources outside of the organization’s boundaries, such as cloud computing environments. To ensure high-availability, performance, and scalability the F5 BIG-IP Local Traffic Manager (LTM) can be deployed to load balance an AD FS server farm. There are several scenarios in which BIG-IP can load balance AD FS services. 1. To enable reliability of AD FS for internal clients accessing external resources, such as those hosted in Microsoft Office 365. This is the simplest of architectures and the most restrictive in terms of access for end-users as it is limited to only internal clients. 2. To enable reliability of AD FS and AD FS proxy servers, which provide external end-user SSO access to both internal federation-enabled resources as well as partner resources like Microsoft Office 365. This is a more flexible option as it serves both internal and external clients. 3. BIG-IP Access Policy Manager (APM) can replace the need for AD FS proxy servers required for external end-user SSO access, which eliminates another tier and enables pre-authentication at the perimeter, offering both the flexibility required (supporting both internal and external access) as well as a more secure deployment. In all three scenarios, F5 BIG-IP serves as a strategic point of control in the architecture, assuring reliability and performance of services upon which applications are dependent, particularly those of authentication and authorization. Using BIG-IP APM instead of AD FS proxy servers both simplifies and makes more agile the architecture. This is because BIG-IP APM is inherently more programmable and flexible in terms of policy creation. BIG-IP APM, being deployed on the BIG-IP platform, can take full advantage of the context in which requests are made, ensuring that identity and access control go beyond simple credentials and take into consideration device, location, and other contextual-clues that enable a more secure system of authentication and authorization. High-availability – and ultimately scalability - is preserved for all services by leveraging the core load balancing and HA functionality of the BIG-IP platform. All components in the chain are endowed with HA capabilities, making the entire application more resilient and able to withstand minor and major failures. Using BIG-IP LTM for load balancing AD FS serves as an adaptable and extensible architectural foundation for a phased deployment approach. As a pilot phase, rolling out AD FS services for internal clients only makes sense, and is the simplest in terms of its implementation. Using BIG-IP as the foundation for such an architecture enables further expansion in subsequent phases, such as introducing BIG-IP APM in a phase two implementation that brings flexibility of access location to the table. Further enhancements can then be made regarding access when context is included, enabling more complex and business-focused access policies to be implemented. Time-based restrictions on clients or location can be deployed and enforced, as is desired or needed by operations or business requirements. Reliability is a Least Common Factor Problem Reliability must be enabled throughout the application delivery chain to ultimately ensure reliability of each application. Scalability is further paramount for those dependent services, such as identity and access management, that are intended to be shared across multiple applications. While certainly there are many other load balancing services that could be used to enable reliability of these services, an extensible and highly scalable platform such as BIG-IP is required to ensure both reliability and scalability of shared services upon which many applications rely. The advantage of a BIG-IP-based application delivery tier is that its core reliability and scalability services extend to any of the many services that can be deployed. By simplifying the architecture through application delivery service consolidation, organizations further enjoy the benefits of operational consistency that keeps management and maintenance costs reduced. Reliability is a least common factor problem, and Ops First Rule should be applied when designing a deployment architecture to assure that all services in the delivery chain are as reliable as they can be. F5 Friday: BIG-IP Solutions for Microsoft Private Cloud BYOD–The Hottest Trend or Just the Hottest Term The Four V’s of Big Data Hybrid Architectures Do Not Require Private Cloud The Cost of Ignoring ‘Non-Human’ Visitors Complexity Drives Consolidation What Does Mobile Mean, Anyway? At the Intersection of Cloud and Control… Cloud Bursting: Gateway Drug for Hybrid Cloud Identity Gone Wild! Cloud Edition223Views0likes0Comments