MITRE ATT&CK
2 TopicsOverview of MITRE ATT&CK Tactic - TA0010 Exfiltration
Introduction In current times of cyber vulnerabilities, data theft is the ultimate objective with which attackers monetize their presence within a victim network. Once valuable information is identified and collected, the attackers can package sensitive data, bypass perimeter defences, and finalize the breach. Exfiltration (MITRE ATT&CK Tactic TA0010) represents a critical stage of the adversary lifecycle, where the adversaries focus on extracting data from the systems under their control. There are multiple ways to achieve this, either by using encryption and compression to avoid detection or utilizing the command-and-control channel to blend in with normal network traffic. To avoid this data loss, it is important for defenders to understand how data is transferred from any system in the network and the various transmission limits imposed to maintain stealth. This article walks through the most common Exfiltration techniques and how F5 solutions provide strong defense against them. T1020 - Automated Exfiltration To exfiltrate the data, adversaries may use automated processing after gathering the sensitive data during collection. T1020.001 – Traffic Duplication Traffic mirroring is a native feature for some devices for traffic analysis, which can be used by adversaries to automate data exfiltration. T1030 – Data Transfer Size Limits Exfiltration of the data in limited-size packets instead of whole files to avoid network data transfer threshold alerts. T1048 – Exfiltration over Alternative Protocol Stealing of data over a different protocol or channel other than the command-and-control channel created by the adversary. T1048.001 – Exfiltration Over Symmetric Encrypted Non-C2 Protocol Symmetric Encryption uses shared or the same keys/secrets on all the channels, which requires an exchange of the value used to encrypt and decrypt the data. This symmetric encryption leads to the implementation of Symmetric Cryptographic Algorithms, like RC4, AES, baked into the protocols, resulting in multiple layers of encryption. T1048.002 – Exfiltration Over Asymmetric Encrypted Non-C2 Protocol Asymmetric encryption algorithms or public-key cryptography require a pair of cryptographic keys that can encrypt/decrypt data from the corresponding keys on each end of the channel. T1048.003 – Exfiltration Over Unencrypted Non-C2 Protocol Instead of encryption, adversaries may obfuscate the routine channel without encryption within network protocols either by custom or publicly available encoding/compression algorithms (base64, hex-code) and embedding the data. T1041 – Exfiltration Over C2 Channel Adversaries can also steal the data over command-and-control channels and encode the data into normal communications. T1011 – Exfiltration Over Other Network Medium Exfiltration can also occur through a wired Internet connection, for example, a WiFi connection, modem, cellular data connection or Bluetooth. T1011.001 – Exfiltration Over Bluetooth Bluetooth can also be used to exfiltrate the data instead of a command-and-control channel in case the command-and-control channel is a wired Internet connection. T1052 – Exfiltration Over Physical Medium Under circumstances, such as an air-gapped network compromise, exfiltration occurs through a physical medium. Adversaries can exfiltrate data using a physical medium, for example, say a removable drive. Some examples of such media include external hard drives, USB drives, cellular phones, or MP3 players. T1052.001 – Exfiltration Over USB One such circumstance is where the adversary may attempt to exfiltrate data over a USB connected physical device, which can be used as the final exfiltration point or to hop between other disconnected systems. T1567 – Exfiltration Over Web Services Adversaries may use legitimate external Web Service to exfiltrate the data instead of their command-and-control channel. T1567.001 – Exfiltration to Code Repository To exfiltrate the data to a code repository, rather than adversary’s command-and-control channel. These code repositories are accessible via an API over HTTPS. T1567.002 – Exfiltration to Cloud Storage To exfiltrate the data to a cloud storage, rather than their primary command-and-control channel. These cloud storage services allow storage, editing and retrieval of the exfiltrated data. T1567.003 – Exfiltration to Text Storage Sites To exfiltrate the data to a text storage site, rather than their primary command-and-control. These text storage sites, like pastebin[.]com, are used by developers to share code. T1567.004 – Exfiltration Over Webhook Adversaries also exfiltrate the data to a webhook endpoint, which are simple mechanisms for allowing a server to push data over HTTP/S to a client. The creation of webhooks is supported by many public services, such as Discord and Slack, that can be used by other services, like GitHub, Jira, or Trello. T1029 – Scheduled Transfer To exfiltrate the data, the adversaries may schedule data exfiltration only at certain times of the day or at certain intervals, blending the traffic patterns with general activity. T1537 – Transfer Data to Cloud Account Many a times, exfiltration of data can also be through transferring the data through sharing/syncing and creating backups of cloud environment to another cloud account under adversary control on the same service. How F5 Can Help F5 offers a comprehensive suite of security solutions designed to safeguard applications and APIs across diverse environments, including cloud, edge, on-premises, and hybrid platforms. These solutions enable robust risk management to effectively mitigate and protect against MITRE ATT&CK Exfiltration threats, delivering advanced functionalities such as: Web Application Firewall (WAF): Available across all F5 products, the WAF is a flexible, multi-layered security solution that protects web applications from a wide range of threats. It delivers consistent defense, whether applications are deployed on-premises, in the cloud, or in hybrid environments. HTTPS Encryption: F5 provides robust HTTPS encryption to secure sensitive data in transit, ensuring protected communication between users and applications by preventing unauthorized access or data interception. Protecting sensitive data with Data Guard: F5's WAF Data Guard feature prevents sensitive data leakage by detecting and blocking exposure of confidential information, such as credit card numbers and PII. It uses predefined patterns and customizable policies to identify transmissions of sensitive data in application responses or inputs. This proactive mechanism secures applications against data theft and ensures compliance with regulatory standards. For more information, please contact your local F5 sales team. Conclusion Adversaries Exfiltration of data often aims to steal sensitive information by packaging it to evade detection, using methods such as compression or encryption. They may transfer the data through command-and-control channels or alternate paths while applying stealth techniques like transmission size limitations. To defend against these threats, F5 provides a layered approach with its advanced offerings. The Web Application Firewall (WAF) identifies and neutralizes malicious traffic aimed at exploiting application vulnerabilities. HTTPS encryption ensures secure data transmission, preventing unauthorized interception during the attack. Meanwhile, a data guard policy set helps detect and block exposure of confidential information, such as credit card numbers and PII. Together, these F5 solutions effectively counteract data exfiltration attempts and safeguard critical assets. Reference links MITRE | ATT&CK Tactic 10 – Exfiltration MITRE ATT&CK: What It Is, how it Works, Who Uses It and Why | F5 Labs MITRE ATT&CK®45Views1like0CommentsOverview of MITRE ATT&CK Tactic: TA0040 - Impact
This article focuses on the Impact Tactic, and the techniques adversaries use to manipulate, disrupt or damage the systems and data as they reach the final stage of an attack. This is one of the critical tactics, as it highlights the adverse effects attackers can cause, including exploitation, operational disruption, data destruction, or financial gain25Views1like0Comments