
Simple Sideband User
Instructions
Peter White Version 1.1 17th July 2023

Introduction
Simple Sideband is an iRule library which helps the user to perform sideband operations in a simple way. A sideband

operation is where an iRule creates a network connection to an external service such as a web server.

Simple sideband is installed as an iRule library and called from a separate iRule which is installed on the virtual server.

There are six functions – http_req, tcp_req, udp_req, dns_query, dns_response and request. The user can control options

such as HTTP method, timeouts, returned data etc

Installation
Rule naming
The iRule should be installed as /Common/simple_sideband. Note that it can be installed as a different name, but this

name is used within the iRule so that should be updated. For example line 163 uses the

/Common/simple_sideband::request so this would need to be updated:

Download the latest version
• Navigate to my Github page at https://github.com/pwhitef5/simple-sideband and download the repository as a

ZIP file:

https://github.com/pwhitef5/simple-sideband

Simple Sideband User
Instructions
Peter White Version 1.1 17th July 2023

• Extract the zip archive

Installation on platform
There are two ways to install the iRule – via the GUI or via tmsh

Loading iRule via GUI
This is very simple. First, login to the GUI as an appropriate user eg admin and ensure you are in the Common partition

• Navigate to Local Traffic > iRules and hit the + button (), or the Create on the right hand

side ()

• Set Name to be simple_sideband and paste in the contents of simple_sideband.irul

• Hit Finished

Loading iRule via tmsh
• Copy the simple_sideband.cfg file to the /var/tmp directory of the target device using an appropriate method eg

SCP

• Run the command tmsh load sys config merge file /var/tmp/simple_sideband.cfg

tmsh load sys config merge file /var/tmp/simple_sideband.cfg

Loading configuration...

 /var/tmp/simple_sideband.cfg

• Save the config with the command tmsh save sys config

tmsh save sys config

Saving running configuration...

 /config/bigip.conf

 /config/bigip_base.conf

 /config/bigip_user.conf

 /config/partitions/dmzinternet/bigip.conf

Saving Ethernet map ...done

Saving PCI map ...

 - verifying checksum .../var/run/f5pcimap: OK

done

 - saving ...done

Simple Sideband User
Instructions
Peter White Version 1.1 17th July 2023

Usage
Simple sideband is a library which provides functionality to other iRules. There are a number of functions – the basic of

which is request.

Request
This takes three variables: destination, payload and options

• Destination is either an IP address and port eg “1.2.3.4:80” or the full name of a helper virtual server eg

“/Common/https_helper”

• Payload is the payload to be sent – either ASCII data such as HTTP or binary data encoded with binary format

• Options allows you to set certain options as a TCL list. When you set this in dependent functions such as http_req,

this will flow down to request.

o protocol – String. Set the transport protocol ie TCP or UDP. Default is TCP

o debug – Boolean. Create debugging logs. Defaults to 0

o connect_timeout. Float. Set connect timeout in secs. Default 1 sec

o timeout – Float. Set total timeout in seconds. Default 5 secs

o idle – Float. Set the idle timeout. Default 3 secs

o recv_bytes – Integer. Set amount of data to receive. Default 0

o retries – Integer. Set the number of retries. Default 1

Example:

set response [call /Common/simple_sideband::request 10.67.182.10:80 "GET

/\r\n" {connect_timeout 3 recv_bytes 3}]

The response from this function is a TCL list such as { <error> <data> }

Error is a Boolean to indicate whether the procedure hit an error ie if it is 0, there was no error. In the case that there is no

error, data will be either the returned data or, if no data is returned, the number of bytes sent. If there is an error, data

will show the error message. Therefore you should check the return from the procedure before using data

Example:

set response [call /Common/simple_sideband::request 10.67.182.10:80 "GET

/\r\n" {connect_timeout 3 recv_bytes 3}]

if { [lindex $response 0] == 1 } {

 log local0.err "Error [lindex $response 1] "

 return

} else {

 Set data [lindex $response 1]

}

Simple Sideband User
Instructions
Peter White Version 1.1 17th July 2023

Note that if you want to receive the response, you have to set the recv_bytes option to a positive number, otherwise it will

just send the request and return the number of octets sent.

tcp_req and udp_req
These are basically a pass-through to the request function. Set destination, payload and options.

http_req
This is used for sending and receiving HTTP-based data. For HTTPS, use a helper virtual server as shown in examples.

Variables are destination, url and options. As with request, destination is an ip address:port or a helper virtual server

name. url defines the URL to be requested eg /index.html. Options includes the options from request but also has:

• method – the HTTP method to be used eg POST. Default is GET

• version – the HTTP version. Default is v1.1

• payload – in the case of a POST this is the payload to be sent

• headers – a TCL list of extra headers to be sent eg { Content-Type application/json }

The return is an array such as <status code> <headers> <body>.

The HTTP status code (or 0 for timeout) eg 200. Headers is a TCL list of response headers eg { Content-Length 123}. Body

is the response body. This will often be ASCII text such as HTML, but could be binary data such as a JPEG.

dns_query
This is a procedure to demonstrate creating a binary packet ie a DNS query packet, to be sent to a DNS resolving name

server. Variable is an FQDN such as www.example.com, return is a valid DNS query packet ready to be sent by udp_req.

dns_response
The partner to dns_query, this is used to decode a DNS response packet. Variable is a response packet such as from

udp_req, return is a TCL list such as: <header> <query> <answers> <auth> <additional>

http://www.example.com/

Simple Sideband User
Instructions
Peter White Version 1.1 17th July 2023

Examples
UDP

Sending iRule:
when HTTP_REQUEST {

 # Create DNS request

 set q [call /Common/simple_sideband::dns_query "www.example.com"]

 binary scan $q H* qhex

 log local0.debug "query:$qhex"

 # Send request to DNS server

 set response [call /Common/simple_sideband::udp_req 10.67.182.10:53 $q

{recv_bytes 1}]

 if { [lindex $response 0] == 0 } {

 # Successful response - decode the DNS esponse

 set data [lindex $response 1]

 binary scan $data H* data_hex

 log local0.debug "Success!: $data_hex"

 set r [call /Common/simple_sideband::dns_response $data]

 HTTP::respond 200 content $r

 } else {

 HTTP::respond 500 content {failure}

 }

}

Answer output:
curl 10.67.182.40

{18766 32776 1 1 0 0} {www.example.com 1 1} {{1 1 12 1.2.3.4}} {} {}

Logs:
Jul 14 08:54:26 simple-sideband-bigip1.pwhite debug tmm[30491]: Rule

/Common/sideband_test <HTTP_REQUEST>:

query:494e0008000100000000000003777777076578616d706c6503636f6d0000010001

Jul 14 08:54:27 simple-sideband-bigip1.pwhite debug tmm[30491]: Rule

/Common/sideband_test <HTTP_REQUEST>: Success!:

494e8008000100010000000003777777076578616d706c6503636f6d0000010001c00c0001000

10000000c000401020304

Additional output:
curl 10.67.182.40

{38749 32776 1 2 0 1} {www.example.com 1 1} {{1 1 12 1.2.3.4} {1 1 12

1.2.3.5}} {} {{2 1 12 {1 51 1 52 1 53 1 54 0}}}

Logs:
Jul 14 09:05:10 simple-sideband-bigip1.pwhite debug tmm[30491]: Rule

/Common/sideband_test <HTTP_REQUEST>:

query:975d0008000100000000000003777777076578616d706c6503636f6d0000010001

Jul 14 09:05:10 simple-sideband-bigip1.pwhite debug tmm[30491]: Rule

/Common/sideband_test <HTTP_REQUEST>: Success!:

975d8008000100020000000103777777076578616d706c6503636f6d0000010001c00c0001000

10000000c000401020304c00c000100010000000c000401020305c00c000200010000000c0009

013301340135013600

Simple Sideband User
Instructions
Peter White Version 1.1 17th July 2023

Simple Sideband User
Instructions
Peter White Version 1.1 17th July 2023

TCP

Sending iRule:
when HTTP_REQUEST {

 # Create HTTP request

 set response [call /Common/simple_sideband::tcp_req 10.67.182.10:80 "GET

/\r\n" {recv_bytes 3}]

 if { [lindex $response 0] == 0 } {

 HTTP::respond 200 content $response

 } else {

 HTTP::respond 500 content $response

 }

}

Command output:
curl 10.67.182.40

0 {HTTP/1.0 200 OK

Server: BigIP

Connection: close

Content-Length: 20

hello world! port:80}

HTTP

Sending iRule:
when HTTP_REQUEST {

 # Create HTTP request

 set response [call /Common/simple_sideband::http_req 10.67.182.10:80 "/"

{}]

 if { [lindex $response 0] == 200 } {

 HTTP::respond 200 content $response

 } else {

 HTTP::respond 500 content $response

 }

}

Command output:
curl 10.67.182.40

200 {Server BigIP Connection Keep-Alive Content-Length 20} {hello world!

port:80}

Simple Sideband User
Instructions
Peter White Version 1.1 17th July 2023

HTTPS

Helper VS:
ltm virtual https_helper {

 creation-time 2023-07-14:09:23:06

 destination 0.0.0.0:search-agent

 ip-protocol tcp

 last-modified-time 2023-07-14:09:23:06

 mask 255.255.255.255

 pool https_pool

 profiles {

 http { }

 serverssl {

 context serverside

 }

 tcp { }

 }

 serverssl-use-sni disabled

 source 0.0.0.0/0

 source-address-translation {

 type automap

 }

 translate-address enabled

 translate-port enabled

 vlans-enabled

 vs-index 3

}

Sending iRule:
when HTTP_REQUEST {

 # Create HTTP request

 set response [call /Common/simple_sideband::http_req

"/Common/https_helper" "/" {}]

 if { [lindex $response 0] == 200 } {

 HTTP::respond 200 content $response

 } else {

 HTTP::respond 500 content $response

 }

}

Command output:
curl 10.67.182.40

200 {Server BigIP Connection Keep-Alive Content-Length 21} {hello world!

port:443}

Simple Sideband User
Instructions
Peter White Version 1.1 17th July 2023

License
Copyright 2023 Peter White

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

Support
There is no support inherent in this code – you use it at your own risk. However, if you find bugs then you are welcome to

contact me and I will try to resolve them on a best efforts basis. If you would like features, feel free to contact me and I

may implement them, or refer you to F5 Professional Services.

http://www.apache.org/licenses/LICENSE-2.0

